在谈及研究初衷的时候,普里玛及教授也表示,最初的灵感来自于他同事卡兹马利克(Kaczmarek)。卡兹马利克博士是一名眼科专家,他敏锐地预见到,具有自我调节能力的仿生虹膜装置能用于治疗虹膜疾病。 因此,普里玛及教授开发的这款人造仿生虹膜将有望为眼疾患者带去福音。不过,他也坦承,目前所开发的装置在开闭的控制上还不够精确,而且只能对相当强烈的光照做出反应,因此他们的研究成果还不能立刻移植到人类眼疾治疗之中。 “这只是万里长征的第一步。也许在不久的将来,我们就能能将这些目标变成现实。” 图丨 照相机光圈 然而,对于摄影爱好者来说,开奖,这项研究最大的意义或许是展现了些许未来的场景:基于这种光敏液晶的自动光圈似乎已经呼之欲出了——无需外部电机的驱动,也不需要测光电路提供光强信号,这两个得天独厚的优势将使得未来的相机变得更加便携的同时,还能降低生产制造成本,可谓一举两得。 不仅如此,全自动化的进光量调节可能也意味着,更多摄影小白们能够更加轻松地跨越技术鸿沟,从而早日跻身摄影大师行列。 但从现实的角度看,这种自动光圈离的实际应用似乎还欠些许东风。最大的阻碍在于,液晶从卷曲恢复到闭合状态需要大概 1 秒钟左右的时间,而现在很多已经商业化的光圈,完成同样的动作仅需数毫秒。除此之外,即使在完全闭合的状态下,研究中所使用的材料仍然能透过10%左右的光。 不过,研究人员们对他们开发的新装置拥有着十足的信心。他们胸有成竹地表示,随着对工艺参数的不断优化,这些技术难点终将被攻克。他们下一步的目标是,希望将这种仿生人造虹膜用做微型机器人的传感器,从而使得这些小家伙们能够根据其周围环境做出相应的反应。 图 | 仿生捕蝇装置 实际上,利用液晶弹性体制备自驱动的微型机器人并非天方夜谭。事实上,在不久之前,普里玛及教授带领的研究团队基于相似的机理,使用相同的材料制备了一款小巧而又灵敏的捕蝇装置。 这款由光驱动的捕蝇装置与一根光纤相连。当有飞蝇飞过时,照在飞蝇上的光部分反射回液晶薄片,从而引起薄片弯曲。 在自然界中的捕蝇草完成同样的过程大约耗时100毫秒,而普里玛及教授教授等人所设计的实验装置耗时约为200毫秒,足可与大自然中这一灵巧结构一争高下。我们完全有理由期待,类似于液晶弹性体这样能自发地对外界环境做出响应的智能材料,一定会为人们的生活带来更多的惊喜。 诗人顾城曾说,黑夜给了我黑色的眼睛,我却用它来寻找光明。现在,我们不仅有了光明,还寻到了一双能控制光明的“眼睛”。 延伸阅读: 这种神奇的材料是如何被发明的? 在这项研究中,研究人员们发现,所使用的液晶在较高的聚合反应温度(polymerization temperature)下发生聚合反应后,在缓慢降温到常温的过程之中,这些原本平面的液晶会在热膨胀引起的应力作用下,自发地发生卷曲,就像下图(a)所示的那样。 图 | 液晶变形示意图:(a)在高于室温的温度下聚合的液晶平面薄片在降到室温之后,会自发地发生卷曲。(b)卷曲角度随温度变化示意图,在约40℃聚合的液晶薄片在降温到室温时(约22℃),卷曲角能达到近360°(图片来源:H. Zeng, et al. Adv. Mater., 2017,1701814 . ) (责任编辑:本港台直播) |