雨落到了你输入模型中的云的外面。那是因为很多人画雨时会先画云,然后画从云中落下的场面。所以如果神经网络看到一朵云,它就会让雨从该形状的底部落下。(有趣的是,虽然数据是一系列的线条,但如果你从雨开始,模型就不会产生云) Eck 认为这些画最有意思的一点是它们只有如此少的信息,却包含了那么多东西。“你画一个笑脸,只用寥寥几笔。”他说。这几笔勾勒和高分辨率的照片表示的脸完全不同,然而3 岁的孩子都可以告诉你它是一张脸,还能看出是幸福还是悲伤。Eck 认为它是某种压缩,一种编码,由 SketchRNN 解码,然后可以随意重新编码。 寥寥数笔的草图中,智能在聚集 OpenAI 的研究员 Andrej Karpathy 表示:“我非常支持 SketchRNN 的工作,这真的很酷,它已经成为 AI 研究的关键节点。但他也指出,他们对模型中线条的重要性做了一些非常强烈的假设,这意味着它们对于开发 AI 的全局不太有用。 “我们开发的生成模型通常会尽可能地与数据集的细节无关,而且无论你放入什么数据,都应该可以工作,无论是图像,音频,文本或其他任何内容。”他说,“除了图像,这些都不是由线条组成的。” 他补充说:“他们做出了强烈的假设,把它们编入模型,并在特定领域获得了令人印象深刻的成果,这一点我完全理解。” Eck 和 Ha 正在建立一个更类似玩国际象棋的 AI,而不是可以弄清和玩任何游戏的 AI。这在Karpathy 看来,这一研究的适用范围似乎有限。 但有理由认为线条绘画是人类思考方式的基础。谷歌员工并不是唯一被草图的力量所吸引的研究人员。2012年,乔治亚理工学院的James Hays 与柏林Technische Universität 的Mathias Eitz 和Marc Alexa 合作,创建了一个草图数据集,以及一个用于识别它们的机器学习系统。 对于他们来说,草图是一种“普遍交流”的形式,所有具有标准认知功能的人都可以做到这一点。他们写道:“自史前时代以来,人们已经以素描般的岩画或洞穴绘画呈现了视觉世界。这样的象形文字比语言出现早了数十万年,今天绘制和识别草图的能力是普遍存在的。” 他们提及了多伦多大学神经科学家Dirk Walther 在“美国科学院论文集”上发表的一篇论文。论文指出,简单抽象的草图会以类似真实刺激的方式激活我们的大脑。Walther 和他的合著者假设这些线条的绘画“捕捉到了我们自然世界的本质”,atv,即使从像素层面看,一条猫的草图看起来也完全不像一只猫的照片。 如果我们大脑中的神经元是以神经网络模仿的分层的方式工作,草图可能是一种方法,可以在特定存储层上提取剥离出的对象概念,也就是Walther 所说的“本质”。也就是说,它们传递了我们的祖先在过去10 万年间的某个时间点上,在演化为现代形式时所产生的新的思考方式。草图,无论是在洞穴墙壁上还是在餐巾纸的背面,可能是从马到马的概念的飞跃,从日常的经历到抽象,符号性的思想,以及在此之上的现代的人。 大多数现代生活源于这一转化:语言,金钱,数学,甚至是计算本身。因此,如果草图最终在创造强人工智能方面发挥重要作用,也毫不奇怪。
不过,当然,对于人类来说,草图是对真实事物的描绘。我们可以很容易地理解那抽象的四条线和事物本身之间的关系。这个概念对我们来说是有意义的。对于SketchRNN,草图是线条的序列,是通过时间形成的形状。机器的任务是提取图纸中描绘的东西的精华,并尝试用它们来了解世界。 SketchRNN团队正在许多方面进行探索。他们可能会建立一个系统,试图通过人类反馈来实现更好的绘画。他们可以用多种草图来训练模型。也许他们会找到一种方式,看他们训练的用于认识猪的概念的模型,能否泛化到逼真的图像上。我很想看到他们的模型中插入其他一些模块,比如已经接受了猫的照片训练的组件。比如使用加州大学伯克利分校创建的神经网络“knows about the textureof cats ”在草图上着色,将让他们在猫的绘画上更加细化。
他们承认,SketchRNN只是“第一步”,还有很多要学习的东西。这些素描解码器发现自己面对的是人类漫长的历史,艺术中反馈的人类历史与技术时代步调并不一致。 (责任编辑:本港台直播) |