【新智元导读】人类自从开始在洞穴的岩壁上画出简单的草图,认知能力就产生了飞跃——归纳抽象的能力大大提高。现在,atv,谷歌的 Magenta 项目也在致力于这一研究。名为 SketchRNN 的 AI 系统,能够“以和人类相似的方式归纳抽象的概念”,画出事物的草图。这一方面反映了谷歌尝试理解人类本质特征并用 AI 进行模拟的通用 AI 研究方向,一方面又很可能确实成为 AI 智能飞跃的奠基工作,是“迄今为止最令人兴奋的项目”。 AI 画草图—— “以和人类相似的方式归纳抽象的概念" 人类自从开始在岩石上作画,认知能力就产生了一个飞跃——现在,计算机也在学着做同样的事情。 想象一下,有个人让你画一只猪,再画一辆卡车。也许你会这么画:
挺简单。但接着,想象你被要求画一个“猪卡车”。作为一个人类,你会凭直觉去理解如何混合这两种事物的显著特征,最后你可能会画出这么个东西:
瞧它那个小卷猪尾巴,还有眼睛似的圆车窗、分不清是车轮还是蹄子的两个圈。如果这幅画是你画的,我,你的人类同胞,会主观地把它当成是“猪卡车”的绝妙写照。 直到不久前,还只有人类能做出这种概念整合的把戏,但现在不同了。上面那张猪卡车的作者实际上是一个称为SketchRNN 的 AI 系统,它是谷歌 AI 是否能创造艺术作品的研究项目的一部分。项目被称为“Project Magenta”,由 Doug Eck 牵头。 上周,我在位于山景城的谷歌大脑团队的办公室里拜访了 Eck。Magenta 项目正在那里展开。Eck 智慧、随性、谦和。他 2000 年从印第安那大学拿到了计算机科学的博士学位,此后则从事音乐及机器学习相关的工作。他先是在 AI 的温床——蒙特利尔大学——做教授,之后去了谷歌。一开始在谷歌音乐工作,后来调到了谷歌大脑参与 Magenta 项目的研究。 Eck 一开始开发能够进行艺术创作的 AI 工具还只是一时兴起。“但一番思索之后,”他说:“就变成了‘我们当然该做这个,这真的很重要!’” 如他和谷歌同事 David Ha 所写到的那样, SketchRNN 的意义不仅在于学习如何作画,更在于学习“以和人类相似的方式归纳抽象的概念。”他们不是想创造一台能够画猪的机器。他们想创造的是能够识别和输出“猪的概念”的机器,即使它同时被输入了一些和家畜无关的提示词,比如卡车。 这里有个隐含论据:当人类画画时,他们会对世界进行抽象的概括。他们勾勒出了“猪”的总体概念,而不是任何特定的一只。也就是说,我们的大脑如何存储“猪的概念”和我们如何画猪之间有一个联系。学习如何画猪,也许会学到一些人类抽象综合的能力。 以下是软件的工作原理。谷歌开发了一个名为“快,画!”的游戏,当人们玩的时候,就生成了大量的人造图像数据库,包括猪、雨、消防车、瑜伽体式、花园和猫头鹰。 当我们绘图时,我们会将丰富、多彩、纷繁的世界浓缩成(数字)画笔的几个动作。这些简单的线条是 SketchRNN 的基础数据集。每一类绘画——猫、瑜伽体式、雨,都可使用谷歌开源的 TensorFlow 软件库来训练特定类型的神经网络。这与那些常见于新闻报道的基于图片的工作不同。那些教会机器绘制梵高或者 DeepDream 风格的画作,或画出任意形状并添加猫的特征等的项目,在人类看来,都较为怪诞。他们绘制的作品近似人类的画作,但又不完全符合人类对现实世界的感知。 SketchRNN 输出的作品则完全没有怪诞感。“他们看上去都很像回事”,Eric 跟我讲,“不能说‘非常像人画的’,但是比那些像素生成的图片看起来像回事多了”。 Magenta 是谷歌收集并尝试理解人类特性的广泛尝试中的一环 这是Magenta 团队的核心理念。“人类认知世界的方式是将人类所见提炼为抽象的概念,而非像素网络“,Eric 和 Ha 在论文中描述道,”小时候起我们就发展出了通过用铅笔或蜡笔在纸上画图来交流的能力“。 如果人类有这样的能力,谷歌希望机器也能具备这样的能力。去年谷歌CEO Sundar Pichai 提出了“AI First“的目标。AI是谷歌”集成全球范围内的信息并使人人皆可访问并从中受益“这一公司使命的自然延伸。如今的变化是谷歌所集成的信息均围绕着AI,并使人人皆可访问并从中受益。Magenta 就是谷歌收集并尝试理解人类特性的广泛尝试中的一环。 (责任编辑:本港台直播) |