本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:当你的深度学习模型走进死胡同,问问自己这5个(2)

时间:2017-06-04 19:34来源:香港现场开奖 作者:开奖直播现场 点击:
之后,就可以运行你的分类器了。不要高兴得太早,虽然目前它的训练准确率已经超过了99%,但当我们用实际场景来测试时,分类器表现并不好。这是为什

之后,就可以运行你的分类器了。不要高兴得太早,虽然目前它的训练准确率已经超过了99%,但当我们用实际场景来测试时,分类器表现并不好。这是为什么呢?

你构建的神经网络可能带有简单的指示性偏差,扫描手写的图片可能带有灰白的背景色,而软件生成的JPEG是纯白色的背景。你的神经网络为了解决你交给它的问题,可能并没有去分析内容、上下文、形状和颜色等要素,而是只抓住了背景色的这一点微小差别。

需要记住的是,你的神经网络永远都不会明白你的大方向,它所做的就是基于手头的目标和数据,atv,以最简单的方式尽快给出一个答案。

彻底审查你的数据集,消除可供神经网络钻牛角尖的特征,atv,可以节约成本和时间。

问题四:

你的网络有兄弟问题可以为它提供支持吗?

在特定领域的问题上,诸如GloVe和Inception之类的预先训练模型可能并不好用。这将迫使你开始随机初始化神经网络,也就意味着可能经过好几天的训练,你还不知道自己的模型效果如何。

你的模型可能还面临着一个问题:数据集太小了或者质量太差了,即使通过旋转、变形等手段扩充之后,也还是达不到训练的要求。

在这种情况下,寻找它的兄弟问题可能是个解决办法。但要注意,这些问题需要符合两个标准:

它们不能和你手头的数据集有同质量和数量的问题。

它们的神经网络需要有一组层,能捕捉到你的模型所需的概念。

问题五:

你的网络是做不到还是懒?如果它懒,如何逼迫它学习?

假如你是一个绘画外行,让你猜测三幅昂贵的绘画作品价格。有三个可用信息可供你查看——作品的年限、作品十年前的价格和这幅画的高分辨率图像。

在没有经过前期训练的情况下,让你完成这个任务,给出尽可能正确的答案,你会怎么办?

你是会报名参加一个为期两月的绘画课程,来学习复杂的绘画技艺,还是会考虑用作品的年限和十年前的价格做一个方程来猜测价格?

即使你能意识到理想的价格方程式包含这三种信息的组合,但你还是很愿意接受一个懒惰的选项:、用两种信息来进行预测。虽然这个选项不是最优解,但也是在能接受范围的。你会更倾向只依赖容易理解和表达的信息。

在用机器学习解决真实问题时,如果你的模型有多个输入信息,它们的复杂度差异很大时,也会遇到这个问题。对这样的模型进行训练,几个周期之后,你可能会发现你的模型好像已经接近完成,并且拒绝进一步学习。

在这种情况下,最好的解决方法是去掉一个输入项,看整体指标的变化。如果一个输入项和结果相关,去掉了之后却对结果毫无影响,你就应该考虑单独用这个输入项来训练模型,当模型学会了依据这个输入项做判断之后,再逐渐将其余的信息也加入进来。

【完】

招聘

量子位正在招募编辑记者、运营、产品等岗位,工作地点在北京中关村。相关细节,请在公众号对话界面,回复:“招聘”。

One More Thing…

今天AI界还有哪些事值得关注?在量子位(QbitAI)公众号对话界面回复“今天”,看我们全网搜罗的AI行业和研究动态。笔芯~

另外,欢迎加量子位小助手的微信:qbitbot,如果你研究或者从事AI领域,小助手会把你带入量子位的交流群里。

追踪人工智能领域最劲内容

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容