AlphaGo再战柯洁,AI继续成为国内外热议的话题,当下AI近乎显学,路人皆知,“名人辈出”。这种情况下,我们也希望能够“回归学界”,与学术界的科研人员聊一下大家关心的AI话题,希望获得一些新的认知收获。 近期,我们拜访了北大林作铨教授。他现为北大数学学院信息科学系一级教授,曾任信息科学系系主任。林教授从事AI研究30年,连续讲授AI课近20年,带博士研究生做AI问题的研究,见证了人工智能60年历史的后半程。 林教授表示愿意从教学角度去做这次分享讨论,因为从教学上老师需要了解不同研究和应用的最新进展,不会受自己研究偏好的影响,能更好讲授知识。 以下为关于此次分享的整理。 如何看待AlphaGo与柯洁对战的结果? 林作铨: 战前大家已普遍预测AlphaGo会战胜柯洁。在围棋上,一旦机器取胜,这个人机大战游戏也就结束了,就象当年的国际象棋一样。我想可简单说一下这个道理。 围棋是完美信息的博弈,即对弈双方都看得见棋盘和走子变化。计算机围棋的基础算法是搜索,模拟人下棋的过程,如果将下棋的每一步看做搜索的一个决策点,搜索过程形成一颗树,树展开每个可能的走子,从中寻找最佳的走法,获取使对方不利己方有利的胜算。 这样搜索的空间是很庞大的,寻找最佳走法所需花的时间是很长的,比如,即使把全世界的计算机都拿来算一万年也不可能穷尽整个搜索空间,换句话说,不管有多大的计算能力都不能穷尽搜索空间,这是所谓的难解问题。如果搜索树很小,比如五子棋,可在很短时间内考虑到所有的情况,这样对弈双方都能找到最佳走法,不管是人还是机器原则上双方都会和棋了。因此,搜索算法研究的关键就是要想办法减少搜索空间,通过启发式方法来把搜索树中一些不值得考虑的分枝剪掉,人下棋所谓靠直觉或经验,实质上也是收缩搜索空间,因为人下棋有一些章法或定式使得我们可以较快下手,不会走明显的无用的俗手,这就是所谓的剪枝法,AI最初取得的重大突破之一。 既然不能穷尽搜索,剪枝有可能会剪错了,这是一种近似优化的方法,就可应用概率模型,在每一个决策点寻找下一个节点时,把它变为一个随机模拟的过程,如果模拟得到最大期望效用的话就用这个决策点的走子,否则就剪枝,这就是蒙特卡罗树搜索算法,这时,计算机围棋可以达到业余棋手的水平,但离职业棋手水平还有一段距离,普遍估计还得10年。 AlphaGo取得了重大突破,把下围棋走子过程看成识别问题,每下一子棋盘的变化容易被识别,这样就可以用深度学习方法,简单点说,AlphaGo中所谓的价值网络和决策网络是用强化深度学习把搜索空间大大地减少,减少到用合理的计算资源可在较短时间找到最优的搜索树的路径,相当于该考虑的决策点都考虑到了,下一步棋先看了几十步棋,不严格地说,近似穷尽了整个搜索空间,算法就“几乎”不出错,或出错的概率远比人小,人经常会下恶手,这时候人就再也下不过机器了。 如果有人想继续研究计算机围棋,必须寻找比AlphaGo更好的算法才有意义,若只是重复AlphaGo的算法,即使性能提高了,这种做法基本上是浪费资源,不如做计算机辅助的围棋教学。 人机大战是想挑战人类下围棋这种智能水平,从而想表明机器具有这种智能水平。柯洁若想赢,一种可能的方式应该和AlphaGo研发人员合作,他们知道程序的缺陷可能在哪里,柯洁与他们一起研究战胜机器的策略,这反过来挑战AlphaGo,对AI的发展有帮助。但估计也比较难有结果,因为深度学习不能“理解”下棋的过程,所训练出来的神经网络参数也不能解释。 AlphaGo战胜柯洁没关系,AI中还有很多这种战胜人类的比赛,只是围棋是一种中国文化,由于搜索空间最大难度也是棋类游戏中最难的,大家比较关注,但大家很快会习以为常,20年前国际象棋的人机大战就是这样。可以预想,今后所有游戏比赛AI都可能战胜人类,这就涉及到了人类与机器如何共处,大家该下棋打牌照样如常。 AI研究选择类似围棋和定理证明这些代表人类智能活动的领域进行研究,其本意是想找到能解决广泛一类问题的通用智能原理,如搜索的剪枝算法就是一个智能的基本原理,它能解决广泛一类问题,而不只是下棋。AlphaGo对深度学习中的无监督学习有很大的贡献,但想发展成通用AI技术很难,除非深度学习就能发展成通用AI,取代AI中其它研究,但这在我看来是不可能的。 什么样的人工智能才算是具有智能? 林作铨: (责任编辑:本港台直播) |