本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:【j2开奖】如何评判一家AI初创企业,这里有17条分析要素(2)

时间:2017-05-28 03:40来源:香港现场开奖 作者:j2开奖直播 点击:
机器学习为主的初创企业中,许多创始人都拥有精湛的技术,但商业智慧将会在其业务的长期发展中发挥巨大的作用。大多数B2B软件公司迟早要建立销售团

  机器学习为主的初创企业中,许多创始人都拥有精湛的技术,但商业智慧将会在其业务的长期发展中发挥巨大的作用。大多数B2B软件公司迟早要建立销售团队,如果不这样业务是不会自动扩大的。因此,具有商业心态的创始人会有很强的建立销售团队的能力、快速进入市场的迫切需求以及建立一个大企业的野心。

  2、可量化的投入产出

  在B2B市场,具有可量化投入产出的解决方案通常可以获得更多的使用、更短的销售周期和很少的用户教育成本。在销售和营销方面,也可以轻松评估销售转化率的改善。在英国,大多数初创企业都将重点放在具有可证明投入产出的领域:

  20%的英国机器学习初创企业都在服务市场营销和广告领域;

  金融行业是使用机器学习最活跃的领域。

  3、客户准备程度

  客户对一个产品或服务的准备程度通常会按照一个漏斗来评估:意识、了解、喜爱、被说服和购买。那么对于一个机器学习的产品或服务:

  我们将准备程度添加到漏斗中作为一个阶段。一个客户是否准备好使用机器学习产品,要看两个方面,一是客户是否拥有合适的、可访问的数据集用于机器学习软件进行训练和部署,二客户是否能通过机器学习解决方案来优化或颠覆现有的流程;

  如果客户达到了“喜爱”这个阶段,我们主要考虑的是信任和控制。信任是对机器学习的信心,例如自动操作和机器学习主导的医疗诊断。另外,即使在信任度很高的情况下,人们也希望参与解决方案。因此,如果维持高人力控制,那么价值实现和服务的可扩展性都会受到影响。

  4、是否符合监管

  对于深度学习,Nuance的Nils Lenke曾经说过“它就像一个很盒子,你不知道里面发生了什么,它并不会告诉你它是如何得到结果的”。这就带来了监管的问题。

  据报道,欧盟将在2018年将对“通用数据保护条例”立法,用户可以要求对一个算法作出解释。不仅如此,美国白宫也发布了“Preparing for the Future ofAI”的报告,里面也提到“研究人员必须了解系统,以便它们得出决策结果的过程透明且能被人们解释。”

  在一些B2B行业,例如销售、市场,算法的透明度不是问题,但在其他方面,例如金融科技,可能对于算法的解释就比较困难。因此,我们需要仔细评估,这些机器学习初创企业可能面临的监管阻力的程度,以及他们打算如何回应。

  5、部署可扩展性

  部署困难会限制机器学习公司扩张的步伐。例如:

  数据集成要求高,但这些数据集多在一个个孤岛里,可能会花费很长时间;对资源的需求大,限制了获客速度和利润。我们跟很多机器学习的公司沟通过,大多数的企业有1/3的员工都是部署人员。

  机器学习公司要尽量减少部署的要求,或自动化数据收集、数据统一和部署,这样会扩张的快一些。

  三:具备防御能力

  机器学习初创企业如何有效的保证自己创造的价值不被竞争对手抢走?这里有六个要素

  1、与巨头的距离

  谷歌、亚马逊、IBM和微软都提供基于云的机器学习服务,包括通用的计算机视觉、语音和文字处理等,而且这些服务的能力和范围将不断增加。离这些行业巨头核心领域越远,初创企业就将拥有更大的防御能力。

  这一距离主要既体现在垂直领域,也体现在通用领域。垂直领域基本集中在医疗健康(谷歌、微软和IBM)和交通(谷歌),因此早期的机器学习初创企业最好避开这些领域,通用领域则包括计算机视觉、语音和文字处理等。

  2、所选领域的复杂性

  如果一个企业可选择的领域是动态复杂的,那么“护城河”就会很宽很深。

  复杂的领域特点:需要广泛的行业专长,对合规敏感,具有特别复杂的技术壁垒。

  3、是否形成数据的网络效应

  好的机器学习企业会通过其数据创造网络效应,形成持续发展的竞争优势:为客户提供好的保障,从客户得到更多反馈和数据,用以改善机器学习产品,接下来为客户提供更好地保障,继续得到更多的数据……

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容