过去我们学习金融时,知道平均成本法(Dollar Cost Averaging),也就是要养成固定去投资的习惯,投资收益是最高的。这是一个基础理论,但大家平时生活中很难做到这么有纪律性,尤其对于刚入职场的小白而言。 现在美国银行和智能投顾公司最让人羡慕的是完全能做到自动理财。一般美国都是双周发薪,通过direct deposit功能,工资直接进入银行账户。银行完成扣款后,会自动划分到智能投顾公司的账户。由投顾公司做一个再平衡,就帮用户理财投资了。对用户来言,每月只需留一些钱还信用卡就行了。智能投顾在切实解决用户体验问题后,让用户量和AUM资产管理规模上来的特别快。 不过现下智能投顾在美国的发展仍处于瓶颈之中。主要是行业领头羊Betterment、Wealthfront处于了一个停滞期。很多潜在投资者对他们的担心是,Robot-advisors这件事,并未改变背后的商业逻辑,也就是配置资产和金融服务的属性没变。但相比于传统机构,他们投入市场和运营的花费却很大,这是典型的互联网人发展模式,先砸钱把用户量做起来。但这也让吸收资金的成本变得非常高。那你的竞争优势到底是什么?估值还这么高,是不是市场吹起的泡泡?这遭遇了很多投资者的怀疑。
趣谈五.智能投顾与量化投资的区别是什么? 相比同样采用计算机与数学模型做投资决策的量化投资,智能投顾最显著的区别是什么?简单来说一个是自动根据市场变化做决策,一个还得靠人来调策略。后者说的正是量化投资,一般是先找出一个模型策略,这个策略不会自动变化。所以一旦当市场环境变化的时候,这个量化策略就失效了,必须由投资经理根据市场情况来调整策略。 对于应用机器学习的智能投顾,则会根据市场的变化不断的产生新策略,也就是应对瞬息万变的市场变化,一切都是在后台自动完成的,并不需要人工干预。因为机器学习有回馈循环(Feedback Loop),从市场-策略-结果再到市场的不断反复循环,会自动根据资产的价格、风险的变动不断调整。 相比量化或人工投资,人工智能处理信息还有一个最大优势,那就是可以把自有证券市场以来的全部数据都录入做分析。特别现在有了GPU、TPU等专门的处理器,依靠强大的运算能力,可以瞬间得到想要的相关性分析,这满足了金融领域对数据的实时性要求。 趣谈六.智能投顾是不是在吹牛,投资业绩到底如何? 刚才谈到利用机器学习和深度学习的方法,智能投顾可以把价格变动的趋势和模式找出来,做到快速反应、快速交易。相信很多人一定好奇,智能投顾相对于量化投资的业绩到底如何。 我们知道最近几年,面对国际金融市场的大幅波动,量化投资的业绩是远远好于很多主动型管理基金。在今年3月传出的BlackRock重组计划中,就裁掉了很多主动型基金部门的员工,将很大一部分的资产将转化为量化管理产品。 而根据对冲数据服务公司Eurekahedge的AI/机器学习对冲基金指数显示,自从2010年以后,其中23支应用智能投顾的对冲基金,在业绩表现方面是要优于量化对冲基金的(如下图)。
趣谈七.人工智能为什么直到今天才取得突破? 我经常开玩笑说,人工智能技术的发展有些复古。因为现在深度学习依托的神经网络系统理论,最早可以追溯到上世纪40、50年代,只不过到现在发展为了多层神经网络技术。从最早的LISP语言、专家系统到神经网络和机器学习,人工智能过去几十年的发展一直都非常低迷。这让李开复老师那一代从业者很是受伤,因为把事业放在上面20年没有进展。那为什么来到今天就突破了呢? 一方面是已提到的多层神经网络(MLP)取得了小突破,特别其中深度学习(Deep Learning)的出现,应用更多层网路,能学习更抽象理念,并融入自我学习中,加速收敛。以前努力了半天,识别能力只能提升百分之几,现在一下提升了百分之二十几,这让AI取得了突破式发展。从智能投顾角度,深度学习既然极大提高了图像识别精度,同理也可以提高识别股票价格变化的模式,虽然这并不意味可以准确预测股价。 (责任编辑:本港台直播) |