大数据文摘作品,转载要求见文末 编译 | 邵胖胖,江凡,笪洁琼,Aileen 也许你已经下载了TensorFlow,而且准备开始着手研究深度学习。但是你会疑惑:TensorFlow里面的Tensor,也就是“张量”,到底是个什么鬼?也许你查阅了维基百科,而且现在变得更加困惑。也许你在NASA教程中看到它,仍然不知道它在说些什么?问题在于大多数讲述张量的指南,都假设你已经掌握他们描述数学的所有术语。 别担心! 我像小孩子一样讨厌数学,所以如果我能明白,你也可以!我们只需要用简单的措辞来解释这一切。所以,张量(Tensor)是什么,而且为什么会流动(Flow)? 目录 0维张量/标量 标量是一个数字 1维张量/向量 1维张量称为“向量”。 2维张量 2维张量称为矩阵 3维张量 公用数据存储在张量 时间序列数据 股价 文本数据 图片 彩色图片 5D张量 结论 让我们先来看看tensor(张量)是什么? 张量=容器 张量是现代机器学习的基础。它的核心是一个数据容器,多数情况下,它包含数字,有时候它也包含字符串,但这种情况比较少。因此把它想象成一个数字的水桶。 张量有多种形式,首先让我们来看最基本的形式,你会在深度学习中偶然遇到,它们在0维到5维之间。我们可以把张量的各种类型看作这样(对被题目中的猫咪吸引进来小伙伴说一句,不要急!猫咪在后面会出现哦!): 0维张量/标量 装在张量/容器水桶中的每个数字称为“标量”。 标量是一个数字。 你会问为什么不干脆叫它们一个数字呢? 我不知道,也许数学家只是喜欢听起来酷?标量听起来确实比数字酷。 实际上,你可以使用一个数字的张量,我们称为0维张量,也就是一个只有0维的张量。它仅仅只是带有一个数字的水桶。想象水桶里只有一滴水,那就是一个0维张量。 本教程中,我将使用Python,Keras,TensorFlow和Python库Numpy。在Python中,张量通常存储在Nunpy数组,Numpy是在大部分的AI框架中,一个使用频率非常高的用于科学计算的数据包。 你将在Kaggle(数据科学竞赛网站)上经常看到Jupyter Notebooks(安装见文末阅读链接,“数学烂也要学AI:带你造一个经济试用版AI终极必杀器”)关于把数据转变成Numpy数组。Jupyter notebooks本质上是由工作代码标记嵌入。可以认为它把解释和程序融为一体。 我们为什么想把数据转换为Numpy数组? 很简单。因为我们需要把所有的输入数据,如字符串文本,图像,股票价格,或者视频,转变为一个统一得标准,开奖,以便能够容易的处理。 这样我们把数据转变成数字的水桶,我们就能用TensorFlow处理。 它仅仅是组织数据成为可用的格式。在网页程序中,你也许通过XML表示,所以你可以定义它们的特征并快速操作。同样,在深度学习中,我们使用张量水桶作为基本的乐高积木。 1维张量/向量 如果你是名程序员,那么你已经了解,直播,类似于1维张量:数组。 每个编程语言都有数组,它只是单列或者单行的一组数据块。在深度学习中称为1维张量。张量是根据一共具有多少坐标轴来定义。1维张量只有一个坐标轴。 1维张量称为“向量”。 我们可以把向量视为一个单列或者单行的数字。 如果想在Numpy得出此结果,按照如下方法: 我们可以通过NumPy’s ndim函数,查看张量具有多个坐标轴。我们可以尝试1维张量。 2维张量 你可能已经知道了另一种形式的张量,矩阵——2维张量称为矩阵 不,这不是基努·里维斯(Keanu Reeves)的电影《黑客帝国》,想象一个excel表格。 我们可以把它看作为一个带有行和列的数字网格。 这个行和列表示两个坐标轴,一个矩阵是二维张量,意思是有两维,也就是有两个坐标轴的张量。 在Numpy中,我们可以如下表示: x = np.array([[5,10,15,30,25], [20,30,65,70,90], [7,80,95,20,30]]) 我们可以把人的特征存储在一个二维张量。有一个典型的例子是邮件列表。 比如我们有10000人,我们有每个人的如下特性和特征: First Name(名) Last Name(姓) Street Address(街道地址) City(城市) State(州/省) Country(国家) Zip(邮政编码) 这意味着我们有10000人的七个特征。 (责任编辑:本港台直播) |