集成方法,如随机森林(RF)或梯度提升树(GBM)则组合了许多独立训练的树。这种算法的主要思想就是组合多个弱学习算法而成为一种强学习算法,不过这里并不会具体地展开。在实践中 RF 通常很容易有出色的表现,而 GBM 则更难调参,不过通常梯度提升树具有更高的性能上限。 优点:决策树能学习非线性关系,对异常值也具有很强的鲁棒性。集成学习在实践中表现非常好,其经常赢得许多经典的(非深度学习)机器学习竞赛。 缺点:无约束的,单棵树很容易过拟合,因为单棵树可以保留分支(不剪枝),并直到其记住了训练数据。集成方法可以削弱这一缺点的影响。 随机森林 Python 实现:#random-forests 随机森林 R 实现:https://cran.r-project.org/web/packages/randomForest/index.html 梯度提升树 Python 实现:#classification 梯度提升树 R 实现:https://cran.r-project.org/web/packages/gbm/index.html 1.3 深度学习 深度学习是指能学习极其复杂模式的多层神经网络。该算法使用在输入层和输出层之间的隐藏层对数据的中间表征建模,这也是其他算法很难学到的部分。
深度学习还有其他几个重要的机制,如卷积和 drop-out 等,这些机制令该算法能有效地学习到高维数据。然而深度学习相对于其他算法需要更多的数据,因为其有更大数量级的参数需要估计。 优点:深度学习是目前某些领域最先进的技术,如计算机视觉和语音识别等。深度神经网络在图像、音频和文本等数据上表现优异,并且该算法也很容易对新数据使用反向传播算法更新模型参数。它们的架构(即层级的数量和结构)能够适应于多种问题,并且隐藏层也减少了算法对特征工程的依赖。 缺点:深度学习算法通常不适合作为通用目的的算法,因为其需要大量的数据。实际上,深度学习通常在经典机器学习问题上并没有集成方法表现得好。另外,其在训练上是计算密集型的,所以这就需要更富经验的人进行调参(即设置架构和超参数)以减少训练时间。 Python 资源:https://keras.io/ R 资源: 1.4 最近邻算法 最近邻算法是「基于实例的」,这就意味着其需要保留每一个训练样本观察值。最近邻算法通过搜寻最相似的训练样本来预测新观察样本的值。 而这种算法是内存密集型,对高维数据的处理效果并不是很好,并且还需要高效的距离函数来度量和计算相似度。在实践中,基本上使用正则化的回归或树型集成方法是最好的选择。 2、分类方法 分类方法是一种对离散型随机变量建模或预测的监督学习算法。使用案例包括邮件过滤、金融欺诈和预测雇员异动等输出为类别的任务。 许多回归算法都有与其相对应的分类算法,分类算法通常适用于预测一个类别(或类别的概率)而不是连续的数值。 2.1 Logistic 回归(正则化) Logistic 回归是与线性回归相对应的一种分类方法,且该算法的基本概念由线性回归推导而出。Logistic 回归通过 Logistic 函数(即 Sigmoid 函数)将预测映射到 0 到 1 中间,因此预测值就可以看成某个类别的概率。
该模型仍然还是「线性」的,所以只有在数据是线性可分(即数据可被一个超平面完全分离)时,算法才能有优秀的表现。同样 Logistic 模型能惩罚模型系数而进行正则化。 优点:输出有很好的概率解释,并且算法也能正则化而避免过拟合。Logistic 模型很容易使用随机梯度下降和新数据更新模型权重。 缺点:Logistic 回归在多条或非线性决策边界时性能比较差。 Python 实现:#logistic-regression R 实现:https://cran.r-project.org/web/packages/glmnet/index.html 2.2 分类树(集成方法) 与回归树相对应的分类算法是分类树。它们通常都是指决策树,或更严谨一点地称之为「分类回归树(CART)」,这也就是非常著名的 CART 的算法。 简单的随机森林 (责任编辑:本港台直播) |