这个新系统与提取街道号码的系统相结合,使我们能够直接从图片创建新的地址,我们以前不知道街道的名称或地址的位置。现在,只要街景汽车在新建的道路上行驶,我们的系统就可以分析成千上万的被捕获的图片,提取街道名称和数字,并在谷歌地图上自动正确创建和定位新地址。 但是,开奖,自动创建谷歌地图的地址是不够的——我们还希望能够通过店铺名称为商家提供导航。在2015年,我们发表了《街景图片大规模发现商家》的文章,提出了一种在街景图片中准确识别商店店面标志的方法。然而,一旦检测到商店门面,仍然需要准确地提取其名称以供使用——模型必须确定哪个文本是商家名称,哪个文本是不相关的。我们将其称为从图片中提取“结构化文本”。它不仅仅是文本,它还是附有语义的文本。 使用不同的训练数据,用于读取街道名称的模型架构也可用于从商家外观图片中精确地提取商家名称。在这种特殊情况下,我们能够仅仅提取商家名称,来验证谷歌地图中是否已经存在该商家,从而使我们能够获得更准确和最新的商家列表。
缺失位置信息的情况下,系统能够预测图片中商店的名称为“Zelina Pneus”。 模型没有被商店所卖的轮胎品牌(Firestone)所迷惑。 在超过800亿的街景视图图片中应用这些大型模型需要大量的计算能力。 这就是为什么地面实况团队是今年早些时候宣布的谷歌 TPU的第一个用户,这样大大降低了我们的计算成本。 人们依靠谷歌地图的准确性来获得帮助。 在保持谷歌地图与城市不断变化的环境保持一致的同时,道路和商家提出了一个远未解决的技术挑战,地面实况团队的目标是推动机器学习中的划时代的创新, 为十多亿谷歌地图用户创造更好的体验。 (责任编辑:本港台直播) |