本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【j2开奖】从传统 CAD 到深度学习驱动的影像系统:智能医疗落地三大技术挑战(2)

时间:2017-05-05 10:56来源:报码现场 作者:118开奖 点击:
2006年,神经网络领域的大师 GeoffreyHinton 教授与其博士生在《Science》和相关期刊上发表了论文,首次提出了“深度置信网络”的概念。与传统的训练方式不

  2006年,神经网络领域的大师 GeoffreyHinton 教授与其博士生在《Science》和相关期刊上发表了论文,首次提出了“深度置信网络”的概念。与传统的训练方式不同,“深度置信网络”有一个“ 预训练”(pre-training)的过程,这可以方便的让神经网络中的权值找到一个接近最优解的值,之后再使用“ 微调 ”(fine-tuning)技术来对整个网络进行优化训练。这两个技术的运用大幅度减少了训练多层神经网络的时间。他给多层神经网络相关的学习方法赋予了一个新名词——“ 深度学习 ”。

  

wzatv:【j2开奖】从传统 CAD 到深度学习驱动的影像系统:智能医疗落地三大技术挑战

  2012年,Hinton 教授的研究团队参加了斯坦福大学李飞飞教授等组织的 ImageNetILSVRC 大规模图像识别评测任务。该任务包括120万张高分辨率图片,1000个类比。Hinton 教授团队使用了全新的多层卷积神经网络结构,突破性地将图像识别错误率从26.2%降低到了15.3%。 这一革命性的技术,让神经网络深度学习以极快的速度跃入了医疗和工业领域,这才有了后来一系列使用该技术的医学影像公司的出现。

  

wzatv:【j2开奖】从传统 CAD 到深度学习驱动的影像系统:智能医疗落地三大技术挑战

智能医疗背后的算法演进

  卷积神经网络(CNN)以及深度神经网络(DNN)等深度学习方法更真实地模拟了人体大脑对图像的识别过程,利用数据量以及计算量作为模型驱动力,通过感受野和权值共享减少了神经网络需要训练的参数个数,最终实现了超越传统方法的图像识别性能。

  

wzatv:【j2开奖】从传统 CAD 到深度学习驱动的影像系统:智能医疗落地三大技术挑战

  对于医疗领域来说,深度学习自动寻找特征化的功能非常有用。图像有不同形态,来自不同的组织,深度学习可以进行分析与处理,让一些人为误差得到调整。通过深度学习提取最主要的特征,它也可以对疾病分类,做图像分类与分割。无需人为干涉,深度学习算法就可以从医学影像中找出许多复杂程度极高,难以用语言详尽描述出的对比特征。这些细微的特征可能是纤维瘤的象征,也可能是息肉。

  想将深度学习应用于医疗影像,先搬到医院旁边去住

  谈到最初将深度学习技术应用于医疗影像领域,推想科技创始人兼 CEO 陈宽告诉我们:“在 2012 年期间,我在美国芝加哥大学修读经济学和金融学双博士,那个时候非常荣幸我的几位导师都是诺贝尔的得主,从他们身上我学到了再简单、再抽象、再精炼的数学模式,其实它也是可以帮助我们更好的去解释,去模拟,去预测,甚至去干预我们现实社会当中的一些实际发生的现象。

  

wzatv:【j2开奖】从传统 CAD 到深度学习驱动的影像系统:智能医疗落地三大技术挑战

推想科技创始人兼 CEO 陈宽

  “于是,在博士期间我其实就非常感兴趣知道,一些新兴的人工智能的模型,包括深度学习,如何可以在经济以及政治领域发挥作用。比如说 2012 年的时候,我就跟几位麻省理工的小伙伴一起用深度学习模型加上机器模型,预测了当年奥巴马能当选总统。

  “我当时自己很想知道深度学习还能在哪一些地方发挥它的价值,于是带着这样一个问题,我就回到国内开始博士期间搜集创业的一些机会,那个时候我觉得做技术的人,很多时候就会陷入一个怪圈,比如说认为自己的技术可能天下无敌,解决什么问题都可以,但是往往当你抱着这样一个心态去创业,去寻找模式的时候,你可能会发现,你的技术可能连最基本的问题都解决不了,什么问题都解决不了。

  “所以我们就觉得说既然要做这个事情,就必须能够跟行业结合的非常紧,所以这个阶段我就跟各行各业人去沟通、挖掘他们的需求,了解他们的痛点。那个时候我沟通的行业非常多,包括银行、政府、保安等等,其中有一次我做 PPT 演讲的时候,我拿出一个脸像识别来做演示,演示结束之后,有一个放射科医生走过来,说你做的脸像识别非常有价值,但是能不能帮助我们放射科医生解决这么一个问题——他当时提出来使用深度学习技术帮助放射科解决问题。于是我就走访了各家医院,发现这样一个需求是真实存在的,也是一个痛点,既影响了医生工作也影响了患者的幸福。”

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容