本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

码报:【j2开奖】解读 | 通过拳击学习生成对抗网络(GAN)的基本原理(3)

时间:2017-04-30 02:04来源:报码现场 作者:www.wzatv.cc 点击:
当你深入研究 GAN 时,你会看到我们目前所面对的一个主要困难,即训练这些网络以让其较好地收敛——我们想让生成器与判别器能够达到我们所希望的平

  当你深入研究 GAN 时,你会看到我们目前所面对的一个主要困难,即训练这些网络以让其较好地收敛——我们想让生成器与判别器能够达到我们所希望的平衡,但是通常都不太会实现。关于会发生怎样的错误可以参见这个网址,在里面你可以查阅很多信息与相关研究:https://www.quora.com/Do-generative-adversarial-networks-always-converge。下面这个网址提供了越来越多如何应对这些问题的信息:https://github.com/soumith/ganhacks。

以下突出强调几个最普遍的 GAN 失败的例子:

1、判别器变得过于强大、迅速,导致生成器结束训练时学不到任何东西。在我们拳击类比中,这就像是判别器变得太强以至于生成器完全在被吊打。由于判别器(相对于生成器)不会犯任何错误也不会给生成器留下任何可匹敌的空间,所以生成器无法学到任何东西。理论上这意味着,在上述训练步骤 3 中,判别器非常精准且自信地把生成的数据分类为假,以至于在对生成器所学习的判别器反向传播损失函数梯度(discriminator's back-propagated loss function gradients)中没有任何东西。

  2、生成器仅会学习判别器非常特定的弱点,然后利用这些弱点来欺骗判别器以使判别器将数据分类为真,而不是学习去描绘真实的数据分布。这在理论上的解释可以参见:。在我们拳击类比中,这就像是生成器仅学到了关于判别器非常有限的弱点,然后尽可能地利用那些弱点而不是去好好学习关于拳击的基础和技巧。在对阵一个没有同样缺点的对手时,生成器会变得毫无用处!并且判别器从生成器中学到的任何东西都也会变得没有用处,因为在真实的比赛中判别器的对手不会表现得像生成器这般无用。

3、生成器仅学习了真实数据分布中非常小的一个子集。在我们的拳击类比中,这就像是我们的生成器仅学会了出拳猛击和躲闪——而没有发展出任何其它工具和技巧。这将会导致判别器从生成器那里仅能学到非常少的东西,并且使得判别器过分重要地去表示这数据分布的小小的子集。在实践中发生的一个例子即:对每个可能的输入,生成器都生成同样的数据样本,并且其输出数据没有任何变化。

  以上的类比是一项正在进行的实验,未来我们会添加更多相关信息。

结论

既然我们已经对 GAN 有一个基础性的了解,那么让我们现在重新审视一下其目标:从非标记的数据中学习强大的表征(例如:从原始数据中获取我们的数据,学习在一个小得多的范围中去表征其最重要的特征 →实现理想的表现所需的有标注数据更少)。

在训练一个 GAN 之后,目前大多数方法将判别器用作迁移学习基本模型以及对生产模型的微调,亦或是将生成器用作训练生产模型的数据源。在我们的拳击类比中,这意味着判别器拿到了他的拳击执照并且竞争对手生成器没有拿到。很不幸,因为生成器看起来是有潜力成为一个更好的拳手的。他要么被解雇,要么就只能作为一个生产模型的陪练。

我所无法创造的,我也无法理解。

一个训练得很好的生成器很好地学习了真实的数据分布,它可以从一个小得多的输入范围中生成属于它的样本。这意味着它发展出了极其强大的数据表征能力。能够在生产模型中直接利用生成器所学到的东西就好了,但目前似乎还没有任何能够做到这一点的方法。如果有,请评论告知。

欲知标准 GAN 清楚且简单的实现(和其它类型的 GAN,如 InfoGAN 和 ACGAN)参阅:

GAN 沙盒:基于 Keras/TensorFlow 实现的 Vanilla GAN——可实现快速实验和研究:https://github.com/wayaai/GAN-Sandbox

这里有几类可生成极为有价值生成器的 GAN,尽管它们也还是「陪练」:

SimGAN:无监督学习和自动驾驶等中的变革者:https://medium.com/intuitionmachine/simgans-applied-to-autonomous-driving-5a8c6676e36b

  原文链接:

  

码报:【j2开奖】解读 | 通过拳击学习生成对抗网络(GAN)的基本原理

  本文为机器之心编译,转载请联系本公众号获得授权

  ?------------------------------------------------

加入机器之心(全职记者/实习生):[email protected]

投稿或寻求报道:[email protected]

广告&商务合作:[email protected]

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容