本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【j2开奖】三张图读懂机器学习:基本概念、五大流派与九种常见算法(2)

时间:2017-04-22 19:15来源:118论坛 作者:www.wzatv.cc 点击:
你应该使用哪种机器学习算法?这在很大程度上依赖于可用数据的性质和数量以及每一个特定用例中你的训练目标。不要使用最复杂的算法,除非其结果值

你应该使用哪种机器学习算法?这在很大程度上依赖于可用数据的性质和数量以及每一个特定用例中你的训练目标。不要使用最复杂的算法,除非其结果值得付出昂贵的开销和资源。这里给出了一些最见的算法,按使用简单程度排序。更多内容可参阅机器之心的文章《》和《》

1. 决策树(Decision Tree):在进行逐步应答过程中,典型的决策树分析会使用分层变量或决策节点,例如,可将一个给定用户分类成信用可靠或不可靠。

优点:擅长对人、地点、事物的一系列不同特征、品质、特性进行评估

场景举例:基于规则的信用评估、赛马结果预测

扩展阅读:《》、《》

  

【j2开奖】三张图读懂机器学习:基本概念、五大流派与九种常见算法

2. 支持向量机(Support Vector Machine):基于超平面(hyperplane),支持向量机可以对数据群进行分类。

优点:支持向量机擅长在变量 X 与其它变量之间进行二元分类操作,无论其关系是否是线性的

场景举例:新闻分类、手写识别。

扩展阅读:《》

3. 回归(Regression):回归可以勾画出因变量与一个或多个因变量之间的状态关系。在这个例子中,将垃圾邮件和非垃圾邮件进行了区分。

优点:回归可用于识别变量之间的连续关系,即便这个关系不是非常明显

场景举例:路面交通流量分析、邮件过滤

  

【j2开奖】三张图读懂机器学习:基本概念、五大流派与九种常见算法

4. 朴素贝叶斯分类(Naive Bayes Classification):朴素贝叶斯分类器用于计算可能条件的分支概率。每个独立的特征都是「朴素」或条件独立的,因此它们不会影响别的对象。例如,在一个装有共 5 个黄色和红色小球的罐子里,连续拿到两个黄色小球的概率是多少?从图中最上方分支可见,前后抓取两个黄色小球的概率为 1/10。朴素贝叶斯分类器可以计算多个特征的联合条件概率。

优点:对于在小数据集上有显著特征的相关对象,朴素贝叶斯方法可对其进行快速分类

场景举例:情感分析、消费者分类

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容