在项目进程中,合作的零售商也发现了一些让人惊喜的结果:很多之前靠经验积累,不明所以的判断,也在模型中一一得以验证。当然我们的分析也提供了之前无法洞察的大量信息。
学习模型-客群消费偏好 目前我们正努力实现标签化地理区域,当企业有相关需求时,只需告诉我们需求和判断因子权重,就可以快速导出分析报告和结果。再下一步我们还考虑做成人工智能系统提供SaaS服务,用户输入数据,选择模型,便能快速到处辅助决策的结论报告。 然而,是否可以放心地说,AI在选址优化的工作中已经彻底打通关节,无所不能了吗?我的回答是:且慢。 首先,一个门店是否成功,除了周边的消费者特性,还取决于地产本身的质量,比如是否方便进入,门头是否足够醒目,房东可以提供的面积和租金,以及自身人员管理水平等。根据我的经验,这些因素在中国要占到6成。 机器学习所训练的,都是那些可以统一获取,没有主观因素的变量。而大量含有主观因素的变量的采集过程,都是人为筛选的,再智能的机器,也无法预测一个新的地点的可租面积,无法预测门头是否从四面八方都可以看见,人工智能无能为力。 其次,选址里面一个非常重要的故事是如何避免姐妹门店之间的相互蚕食,特别是连锁加盟型企业,面对加盟商,如果保证每家店的利益,避免法律诉讼。也许有人会说,我在模型里加入姐妹门店的距离,不就行了?以下面的地图为例,这个门店的消费者明显来自于高速公路的西北面,很少有人从东南过来。假如只考虑距离,而不知道消费者的分布,则很难告诉零售商,假如新增加一个门店这个区域里,开在哪里,不会蚕食现有门店的销售额。 这种情况,人工智能依然无法做出判断,因为几乎没有什么可以拿来学习,就算通过历史销售数据找出某些有可能出现蚕食的门店配对,学习的结论对于新的门店,依然毫无意义。这里就是体现出手机GPS定位数据的重要性了,但和AI无关,我们按下不表。
通过手机GPS数据和地理围栏Geofence技术获取的门店客源分布 总结一下:机器学习,对于选址里的主观变量,样本不足,无法用于预测等陷阱无法做到全智能。就算是机器学习本身,对于数据的选择也很有讲究。比如我们学习的门店,是在已经成熟的社区,而我们要预测的新址,却是在新区,那么模型很可能会给出误差。 这时就有必要拿出社区未成熟时的POI数据进行学习,寻找当时的规律。这一点其实是普适的:对于任何怀揣着机器学习/人工智能梦想就进入一个全新领域,却没有自身完善的数据积累的公司,都是前途叵测。 总体而言,机器学习/人工智能对零售选址带来的革新,是积极的。特别在中国,零售从线下轰轰烈烈地走到线上,又从线上回归到全渠道发展服务客户的商业本质。所以线下的需求肯定还会重启,特别是社区零售/连锁餐饮/便利店,开店的需求在持续增长。 特别是中国,在地理数据不开放,数据质量不高,数据层次不多的情况下,我们已经看到新方法可以有效地梳理出一些线索,完成从0到1的变化,这种质变比起AI在美国的模型仅仅是改进,是个飞跃。对于选址专家来说,这一代技术进步,为他们提供了一个智能慧眼,辅助着他们处理数据,寻找规律。 无论是像IBM这样的咨询服务商可以集成到自己零售解决方案,和Watson沃森的结合,还是像CBRE,JLL这样的房地产代理行,可以集成到自己的租户管理服务中,还是直接为零售企业的房地产部门做使用,AI技术都提供了多种可能。选址终归是一个艺术和科学的结合,结合丰富的市场经验和多方位的方法,这个为“新零售“选址的工作一定会更加高效。 (责任编辑:本港台直播) |