「黑箱」问题是深度学习所特有的。该系统不受大量而明确的医学知识和一系列诊断规则的引导;通过进行大量的内部调整——类似于加强和减弱大脑中的突触连接——它已经能够有效地教自己去区别痣与黑色素瘤。它究竟是如何将某一病变确定为黑色素瘤的呢?我们无法知道,它也无法告诉我们。所有允许网络去学习的内部调整和处理都发生在我们的审查能力之外。就像我们自己的大脑一样。当你骑自行车慢慢转弯时,你会向相反的方向倾斜。我的女儿知道自己是这样做的,但这并不是她自己的选择。该黑色素瘤机器必须从图像中提取某些特征;如果它不能告诉我们所选的是哪一个特征,这会有什么影响吗?这就像是微笑着的知识之神。遇到这样一台机器,你可以窥见动物感知人类心灵的可能方式:无所不知但却难以理解。 Thrun 轻快地设想了这样一个世界——我们时刻处于诊断的监控之中。我们的手机将分析如何把语音模式转化为老年痴呆症的诊断。一个方向盘会通过你小幅度的踌躇和震颤来检测出早期的帕金森氏症。当你在洗澡时,一个浴缸将通过无害的超声波或磁共振来执行顺序扫描,以确定卵巢中是否出现了新的需要调查的紊乱。大数据将会观看、记录和评估你:我们将从一个攫取的算法中穿梭到下一个。进入 Thrun 的这个浴缸和方向盘的世界就是进入了一个诊断镜大厅,每面镜子都敦促着更多的测试。 很难不被这种愿景所诱惑。一个每天都在做图像对照、不断以细节————甚至可能是细胞——颗粒的方式对我们进行扫描的医疗监狱,可能会使我们在癌症的最早期诊断出它吗?它能提供癌症检测方面的什么突破吗?这听起来令人印象深刻,但其中有一个陷阱:许多癌症都注定是因人而异的。我们是和它们一起死去,而不是因它们死去。如果这样一个身临其境的诊断引擎将导致数以百万计的不必要的活检呢?在医学上,早期诊断可以挽救或延长生命。但也有一些情况是,你会担心更长的时间,但不会活得更久。很难知道你想知道多少。 「我对于增强人类能力方面很感兴趣,」当我问他这种系统对人体诊断的影响时,Thrun 这样说到。「看,工业耕作消除了某种形式的耕作吗?当然,不过它也扩大了我们生产农产品的能力。并非所有这些都是好的,但它使我们能够养活更多的人。工业革命增强了人类肌肉的力量。当你使用电话时,你增强了人类语言的力量。在纽约的你无法令加利福尼亚的人听到你的喊叫」——的确,当时 Thrun 和我的通话距离就是这么长——「但你手上的这个矩形设备可以让人声传递到 3000 英里之外。电话取代了人声吗?没有,电话是增强设备。认知革命将允许计算机以同样的方式增强人类的思维能力。就像机器使人类肌肉增强了 1000 倍一样,机器也将令人类的大脑性能增强 1000 倍。」Thrun 坚持认为,这些深度学习设备不会取代皮肤病医生和放射科医生。它们将加强专业人士的能力,为他们提供专业知识和援助。 四 Geoffrey Hinton 是多伦多大学的计算机科学家,他认为学习机器将在临床医学中发挥出更大的作用。Hinton——乔治·布尔的玄孙,其布尔代数是数字计算的一个基本原理——有时被称为深度学习之父;这是他从 19 世纪 70 年代中期以来就开始研究的一个主题,他的许多学生如今已成为该领域的主要设计者。 「我认为,如果你是一名放射科医生,那么你就像是漫画中的 Wile E.Coyote(译注:先拼命地往悬崖外跑,离了很远之后才发现自己已经踏空。),」Hinton 告诉我。「你已经越过了悬崖的边缘,但是还没有朝悬崖下看去。下面并没有地面。」用于乳房和心脏成像的深度学习系统已被商业化开发出来了。「这完全是显而易见的,深度学习将在 5 年内胜过放射科医师,」他继续说道。「可能是 10 年。我在一个医院里说过这个。但是这一点并没有获得广泛的接受。」 Hinton 那次在医院的原话很直率:「他们现在应该停止训练放射科医生了。」当我向 Angela Lignelli Dipple 提出这个挑战时她指出,诊断医师并非仅仅是在做 yes-no 式的分类工作。他们不仅仅是在定位导致中风的栓塞。他们是在关注其它地方的小出血,这些小出血可能会令溶栓药物的使用造成灾难性的后果,他们是在寻找一种意料之外的、或许依然处于无症状状态的肿瘤。 「很好。结果稍微是可预测的」 (责任编辑:本港台直播) |