这个触觉传感器非常非常昂贵,大概是15000美金一支。它是基于流体内部的定位、电压区别,做的一个触觉的传感器。
在所有的这些事情里面,科学的部分和工程的部分,其实并不是泾渭分明的,但是大家可以看到哪些部分属于科学,比如说光学、比如说电的基本原理,电阻是怎么工作的,电路本身是怎么工作的,比如说在做视觉识别的时候,怎么做模式识别,怎么用神经网络判断什么东西是什么,在什么地方,这都是属于科学研究的部分,特别是像计算机里面相关的内容,都是属于我们叫做形式科学的部分。 那么工程部分则涉及到,比如说视觉这件事情,就涉及到你如何去组视觉的服务器,你如何选镜头,你如何搭建后面的算法,你在算法实现成代码的时候,你如何取组织代码,包括传感器你如何去选材料,如何去制作,这就是工程的部分。 运动规划:怎么从A点到达B点 在sense-plan-act大图里面的第二块,也是最主要的一块,是Motion Planning,或者叫运动规划,就是解决如何从A点移动到B点,不碰到周围的障碍物的问题。这是我们刚才视频里面有展示的图,就是机器人做运动规划的一个图。
大家可以仔细看有一个虚幻的机械臂的动作,就是它在计算运动规划的过程,可是这个臂的运动太快了,它一直在追那个规划,追自己的幻影。
运动规划讲起来是一个比较大的复杂的话题,简单说明一下。
假如这个画面上绿色的三角形是一个机器人,右上角的圆点是机器人的参照坐标,中间那个大的蓝色部分是一个方形的障碍物。对于这个机器人来说,实际上是有三个不同的参数可以用来描述它的完整状态——X、Y的坐标,以及它的旋转方向。 在这个情况下,我假设它的旋转方向是不变的,也就是XY两个参数就可以描述这个机器人的一个完整的状态。 假如说我以坐标蓝点作为一个参照点的话,这个机器人能够到达,或者说它的参考坐标点能够到达的那个区域就是红线以外的区域。这是一个很重要的概念,后面所有的东西都是以这个基础的。
再假设,这个三角形的机器人本身发生了形变。左边是机器人的工作空间,右边是它的配置空间(configuration space)。在工作空间里,机器人完整的形体由蓝色三角形来描述;在配置空间里面,j2直播,机器人的状态由一个小绿点来描述。当机器人本身的形状变化的时候,虽然障碍物没变,但是机器人在配置空间里能够达到的位置是一直在变化的。
刚才谈论的是一个二维的情况,这是一个三维的情况。大家可以看到右边的平面里面的小三角形机器人,如果它拥有旋转的能力,它的状态空间就会形成这样的三维的形状,看起来就会非常非常的复杂。
左边是一个在二维空间里面的机械臂,右边是它对应的configuration space。 (责任编辑:本港台直播) |