现在,对于那些手头很紧又要买 GPU 的人来说,选择更少了。AWS 的 GPU 实例很贵而且现在也慢,不再是一个好的选择,如果你的预算很少的话。我不推荐 GTX 970,因为速度慢还死贵,即使在 eBay 上入二手(150 刀),而且还有存储及显卡启动问题。相反,多弄点钱买一个 GTX 1060,速度会快得多,存储也更大,还没有这方面的问题。如果你只是买不起 GTX 1060,我推荐 4GB RAM 的 GTX 1050 Ti。4GB 会有限,但是你可以玩转深度学习了,如果你调一下模型,就能获得良好的性能。GTX 1050 适合绝大多数 kaggle 竞赛,尽管可能会在一些比赛中限制你的竞争力。 亚马逊网络服务(AWS)中的 GPU 实例 在这篇博文的前一个版本中,我推荐了 AWS GPU 的现货实例,但现在我不会再推荐它了。目前 AWS 上的 GPU 相当慢(一个 GTX 1080 的速度是 AWS GPU 的 4 倍)并且其价格在过去的几个月里急剧上升。现在看起来购买自己的 GPU 又似乎更为明智了。 总结 运用这篇文章里的所有信息,你应该能通过平衡内存大小的需要、带宽速度 GB/s 以及 GPU 的价格来找到合适的 GPU 了,这些推理在未来许多年中都会是可靠的。但是,现在我所推荐的是 GTX 1080 Ti 或 GTX 1070,只要价格可以接受就行;如果你刚开始涉足深度学习或者手头紧,那么 GTX 1060 或许适合你。如果你的钱不多,就买 GTX 1050 Ti 吧;如果你是一位计算机视觉研究人员,或许该入手 Titan X Pascal(或者就用现有的 GTX Titan Xs)。 总结性建议 总的说来最好的 GPU:Titan X Pascal 以及 GTX 1080 Ti 有成本效益但价格高的:GTX 1080 Ti, GTX 1070 有成本效益而且便宜:GTX 1060 用来处理大于 250G 数据集:常规 GTX Titan X 或者 Titan X Pascal 我钱不多:GTX 1060 我几乎没钱:GTX 1050 Ti 我参加 Kaggle 比赛: 用于任何常规比赛,GTX 1060 , 如果是深度学习比赛,GTX 1080Ti 我是一名有竞争力的计算机视觉研究人员: Titan X Pascal 或常规 GTX Titan X 我是一名研究人员:GTX 1080 Ti. 有些情况下,比如自然语言处理任务,GTX 1070 或许是可靠的选择——看一下你当前模型的存储要求。 想建立一个 GPU 集群:这真的很复杂,你可以从这里得到一些思路:https://timdettmers.wordpress.com/2014/09/21/how-to-build-and-use-a-multi-gpu-system-for-deep-learning/ 我刚开始进行深度学习,并且我是认真的:开始用 GTX 1060。根据你下一步的情况(创业?Kaggle 比赛?研究还是应用深度学习)卖掉你的 GTX 1060 然后买更适合使用目的的。 原文地址: 本文为机器之心编译,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |