由于他们的二值化神经网络,除了带来的数十倍的内存减少和计算提升,二值化操作天然就被CPU等通用计算设备支持,所以二值化神经网络能够在普通的CPU和更便宜的ARM芯片甚至是树莓派等设备,Mohammad还表示他们也在微软的Hololens上实现了他们的算法。 在采访中,Mohammad说道,他们的深度学习技术能够用在计算能力和内存都有限的设备上,XNOR.AI针对的市场是普适计算的场景,他们希望未来所有的智能设备都可以运行他们的深度学习算法。 而CEO Ali Farhadi曾说:“可以设想,未来每个街道拐角,价值5美元的摄像头,都能识别看到的景象,了解正在发生的事情;而我的手表也能真正听懂和处理指令。”
(在手机上实时物体检测) Mohammad表示物体的实时检测是一个非常难的问题,他们用视频演示了他们的强悍能力,目前不少实时检测都通过将视频流传到云端来做检测,但这一方面带来了延迟问题,另一方面则是带来了隐私问题,但利用他们的算法,实时的物体检测在本地就能完成。 Mohammad也表示这不代表他们只会局限在计算机视觉领域,直播,目前他们能够对主流的深度学习网络比如RNN和CNN进行二值化操作。除了视觉领域,还有自然语言处理都有望实时化操作。 作为成立才一个月的公司,Mohammad还在探索自己的商业模式,但已经有大量厂商和他们联系了,XNOR.AI的愿景是普适人工智能,“AI on every device everywhere”。
有相关资源并且对XNOR.AI感兴趣的投资人,欢迎联系硅谷密探: [email protected] 关注硅谷密探 紧盯全球创新趋势 (责任编辑:本港台直播) |