这里的 q 叫做配分函数(Partition Function),就是系统中粒子在不同能量级上的分布,它是连接微观粒子状态与宏观状态的桥梁,是整个统计力学的核心。不仅对于气体粒子,玻尔兹曼分布同样被证实适用其他微观到宏观的状态演化,比如著名的Ising Model。Ising Model最初是用来解释铁磁物质的相变(磁铁加热到一定温度以上出现磁性消失)的,模型标定每个小磁针两个状态(+1 -1),所有N个粒子的状态组合是一个"配置",则系统共有2的N次方个"配置",该系统的数量众多“配置”的不同能量级分布服从“玻尔兹曼分布”: 因模型简单与高度抽象,IsingModel被广泛应用于自然科学与社会科学等众多领域。如果将小磁针看作神经元,磁针状态看作激发与抑制,Ising Model 也可以用来构建深度学习的Hopfield模型,或者玻尔兹曼机 。Hopfield Associative Memory (HAM)是经典的神经网络,它仅包含显式神经单元,j2直播,给这些单元赋予能量,经过推导,我们可以得到这个神经网络的配分函数和自由能表达式,看起来是不是似曾相识? 不过HAM模型有不少显而易见的缺点(无法一层层提取潜变量的信息),Hinton因而创造了有隐含神经元的RBM。 在《迷人的数据与香农的视角》与《站在香农与玻尔兹曼肩上,看深度学习的术与道》两文中,我反复介绍了自己的“顿悟”:“事物由不同层次的随机变量展现出来的信息来表达,不同层次上的随机变量携带不同的信息,共同组合影响上一层的随机变量的信息表达,而随机变量对外表达的信息则取决于该随机变量的条件概率分布”。如果要给这个“顿悟”找个科学的解释,最合适就是尺度重整化(ScaleRenormalization)了。Charles H Martin博士2015年在其文章 《Why Deep Learning Works II: theRenormalization Group》提到,在神经网络中引入隐含节点就是尺度重整化。 每次尺度变换后,我们计算系统有效的哈密尔顿能量,作用在新的特征空间(潜变量空间),合理的尺度重整化保持了系统哈密尔顿自由能的不变性。注意这里的能量守恒,它确保了尺度重整化的合理性。每一次尺度变换后,自由能保持不变。F =-lnZ, 这里Z是配分函数(上文的q),是一个能量(不同能级上粒子数)的概率分布,Z不变,即能量的概率分布不变,就是要求潜变量的特征空间中的大尺度“粒子”能满足原来能量的概率分布。重整化群给出了损失函数,也就是不同层的F自由能的差异, 训练就是来最小化这个差异。 这么多的基础理论,展现了深度学习中的无处不在的物理本质。我还可以举几个大家熟悉的例子,激发思考:CNN 中卷积的意义是什么,平滑输入特征对最终的模型为什么是有效的,为什么池化(pooling)很实用?动量(Momentum)优化方法为什么比普通的SGD快,而且适用高曲率的场合? 为什么Dropout是高效、低能耗的 规则化(Regularization)方法?为何Lecun新提出的EBGAN有更好的收敛模式和生成高分辨率图像的可扩展性?不一而足,深度学习实验室应该多欢迎一些物理背景的学者参与进来啊! 人法地,地法天,天法道,道法自然。在女生节、女神节里,对身边可爱、聪慧、善良、温婉、贤惠与伟大的女性同胞多一声祝福,衷心希望男同胞不要收到“薛定谔的滚”!用智慧的头脑,不断重整化我们的认知、态度,让和谐与美好成为最大似然。 作者简介 王庆法,阳光保险集团大数据中心副总经理兼首席架构师、平台部总经理,首席数据官联盟专家组成员,16年在数据库、分布式系统、机器学习以及云计算等领域,从事软件开发、架构设计、产品创新与管理。热衷于基于市场的数据产品的创新与落地。 (责任编辑:本港台直播) |