参与:黄小天、李亚洲、微胖、蒋思源 近日,机器学习与金融风险投资机构 DCVC 的合伙人 Bradford 写的一篇博客在国外引起了极大的关注,他认为 2017 年人工智能领域内的创业将会发生 5 大变化。这篇文章也许能为投资者提供一些洞见。 Bot 公司将破产 深度学习商品化 人工智能成为风险投资的「清洁科技」翻版 MLaaS 将陷入第二次停滞 全栈垂直人工智能创业公司有发展 随着对 AI 的狂热追逐日趋放缓,2017 将是重新梳理的一年。纯炒作趋势将不攻自破。矛盾的是,小部分垂直型 AI 创业公司在满足了相关专业知识、独特数据和使用 AI 传递其核心价值观的产品的需求之后,将解决全栈产业问题,因此 2017 同时又是取得突破性胜利的一年。 Bot 将陷入破产 过去一年升起了一股对 bot 的狂热追逐。 在技术社区,当谈到机器人时,我们通常指的是软件代理,且通过 4 个关键概念进行定义,从而与任意程序(arbitrary programs)代理、环境反应(reaction to the environment)代理、自主(autonomy)代理、目标导向和持续性的代理进行区分。 业界盗用了原指任何形式的业务流程自动化的术语「bot」,并创造了新术语 RPA——机器人流程自动化。 当然,业务流程自动化将会在未来的几十年内持续发挥作用,如今表现为「bot」(包含语音和聊天功能的对话式界面)的机器人狂热将在 2017 年开始冷却。原因如下: 消费互联网领域内的社会化与个性化之争提供了一个很好的借鉴。最后胜出的是个性化平台 Facebook,同时也是一个社交平台。人们依然喜欢在大多数事情上与人交流,我猜测许多 chatbot 将采用与非社交媒体平台相同的方式,试图在没有社交策略的情况下押注个性化。围绕着 bot 的很多思考是肤浅的功利主义,缺少社交智能来辨识人们之间相互交流所满足的人类需求。由于这个原因,大多数 bot 很难留住用户,即使在一开始吸引了他们。 全球通讯 App 的大爆发,比如 Slack 的崛起和中国的微博等特定社交平台的成功释放了很多误导性信号。很多人据此推断并押注诸如 AI 驱动的数字个人助手等平台。根据第一条,这些社交平台正在解决人们的功利与情感需求。但据此推断可以将其应用于纯功利的 AI chatbot 上,这尚不明了。 相比于其他更可视化的解决方案,会话式界面在完成任务方面不总是那么有效。会话式界面很有趣,并在在 HCI 社区中已存在了几十年。在一些应用中会话式界面表现绝佳,但是在现实中,我认为有做事效率跟高的界面可用于绝大多数应用。 注意,我并没有说过 AI 还不够好。像 siri 等大多数系统存在的更多问题是执行欠佳。我们用现代技术打造了很多有趣的机器人界面,随之我心中出现了一个更大的问题:机器人并不清楚我们想使用它们。 深度学习商品化 现在深度学习非常盛行。对于那些不了解其他 AI 术语的人来讲,深度学习是机器学习的一部分,机器学习是人工智能的一部分。深度学习并不是一个新鲜事物,它只是一系列为很多重要问题提供了最好的答案的很酷工作,人们可以正确地从中受益。 深度学习初创公司已经取代了 5 年之前的 iOS 移动应用创业公司。许多公司都为深度学习的能力感到意外,尤其是产生优越成果并解决新问题的计算机视觉。结果,我们看到了谷歌、Facebook、推特、Uber、微软和 Salesforce 积极采取并购策略填补空缺。 因此,如果深度学习如此重要并高受追捧,为什么我认为它今年会商品化?原因在于 2016 NIPS 会议及其他所有会议。很明显深度学习现在无处不在,在这方面有很多毕业生。4 年之前的情景却大不相同。如今,市场已经作出调整以创造更多的人才供给。 现在,我要对上述所言做一个清晰的声明。我认为今年在机器学习人群中,深度学习会成为更大的社区,但是我并没有说机器学习本身会商品化。机器学习人才依然炙手可热。我们在过去几年中看到的深度学习初创公司被收购而带来的收益,将在第二层技术公司和外部技术公司(如底特律的公司)完成目前的收购浪潮后崩溃。我预计今年一群数量稳定的迟到者将会带着傻钱进入,但此后我们也许看到并购浪潮开始放缓。 人工智能成为风险投资的「清洁科技」翻版 让我们回想一下最近「清洁科技」公司破产的主要原因,这同样适用于人工智能。 (责任编辑:本港台直播) |