第二象限(左上角)渠道的质量比较高,但带来的流量比较小,这里面包含的主要渠道就是八九十。对应的主要策略是,加大渠道的投放,并且在加大投放的过程中,要持续关注渠道质量的变化。 我们先看第四象限(右下角),渠道质量比较差,但是带来流量比较大,这里面主要有渠道一和渠道二。相对应的渠道策略,应该在渠道做更加精准的投放,来提高整个渠道的质量。 第三象限(左下角)这个象限里渠道质量又差,带来流量又小,比如渠道六跟渠道七。我们是否要直接砍掉?这里建议是,策略上要比较谨慎一些。所以在具体渠道的策略上,业绩保持监测,然后小步调整。 根据上面数据分析得出的结果,做过渠道优化后,就会为我们带来更多高质量的用户。 四、找出高价值用户 将资源与精力投入到真正可能购买的用户上的前提是,我们要能够识别出,哪些是真正有价值的用户?哪些是价值偏低的用户? (一)用户的核心行为 其实对于互联网金融平台来说,甚至所有包含在线交易的平台,用户的购买意愿,是可以从用户的行为数据上识别出来的。由于互联网金融平台的特殊性,相比于电商平台来说,商品品类更少,平台功能也更为简单,所以用户的行为数据,也更能反应出互联网金融平台上用户的购买意愿。 把用户在平台上的所有行为总结一下,核心的行为其实并不多,具体包括: 用户查看产品列表页,说明有一些购买意愿,点击某个产品,说明用户希望有进一步的了解。用户最终确认了支付,完成了购买,购买流程就走完了,他的理财需求已经得到了满足。每一种行为都表示出用户不同程度的购买意愿,所以获得用户在产品里的行为数据就十分重要。 (二)通过量化分析找出高价值用户 既然用户行为数据这么重要,那么怎样获取呢?以无埋点的方式,,根据我们对业务的需求,配比成不同的权重系数,并按照每个用户购买意愿的强弱,进一步分群。 这是我们一个客户制作的用户购买意愿指标的范例,刚才的前 5 个行为,都是用户在购买前典型的行为: 每种典型事件的权重系数不一样,用户购买意愿是越来越强的:用户点了投资按纽,甚至点了提交的按钮,显然要比他单单看产品列表页,或者单单看产品页、详情页的意愿强。越能反应用户购买意愿的事件,你给它分类的权重应该是最大的,这是大的原则,0.05 还是 0.06 影响并不大,所以不必纠结。 这样通过这种方式,我们就可以按照每个用户的所有行为,给用户做购买意愿打分的指标,最终形成用户购买意愿的指标。 这是我们从高到低截取部分用户购买意愿打分的情况,第一列是每个用户的 ID,第二列是按照购买意愿给每个用户打分的情况。得分高的,就是购买意愿最强烈的用户。 拿到所有用户购买意愿之后,我们就可以按照用户购买意愿的强烈与否,把所有的用户分成不同的群体,来做针对性的运营。 (责任编辑:本港台直播) |