如果我们把智能手机的奇点临近定义在2009年苹果推出iphone3GS,那今天的智能汽车相当于2005年的智能手机,我们依稀看到Tesla就是当年iphone的影子,Elon Musk也符合乔布斯的特点。Tesla今天把电动化、智能化、共享化集于一身:拥有最成熟的电动车技术,顶着撞死人的风险将辅助驾驶商业化,通过一年的时间收集了10倍于Google 7年收集的数据,未来可以轻易的切入分时共享的业务。我非常看好Tesla,他一定是在渐进式道路上跑的最快的那一家。一旦Tesla取得阶段性成果,传统车厂的危机感会立刻提升,这也会快速促成传统车厂与自动驾驶公司的合作与并购,用金钱买时间或者团队,也许这就是自动驾驶公司退出的最好机会。 创业和投资的机会在哪里? 既然我们已经认定自动驾驶公司最有可能的出路是被大公司收购,那么我们就要以终为始的来看看,如果你是车厂、滴滴、百度,你到底会愿意花钱买什么?不难想象到,当激光雷达的价格降低1000美金以下,或者仅靠低层本的视觉算法或毫米波到能够解决感知、地图采集、定位等问题的时候。整个行业就真正进入了第二个rising cycle。大公司将不顾一切的投资资源,快速起飞。这时候,什么才是大公司愿意用钱买时间的好资产呢? 我们可以简单的把自动驾驶分为:生产制造、车辆控制、感知、决策规划、用户运营等五个环节。产业链中不同的player拥有不同的禀赋,但大家都希望能够延伸到更有价值的环节(越靠近用户越有价值),所以巨头都纷纷向自己能力缺陷的环节进行投资。我们看看过去一年投资并购相关的实际案例。 ? Cruise:自动驾驶方案,被GM 10亿美金收购,2013年成立,40人。通用技术水平一般,为了stay relevant进行收购。 ? Otto:商用车自动驾驶方案,被Uber 6亿美金收购,成立不到1年,100人,收购技术和团队。CEO曾在Google自动驾驶工作 ? Velodyne、Quanergy : 激光雷达公司,分别被福特百度、通用等多家车厂战略投资 个人认为这几个方向上存在机会,仅供大家参考: ? 低成本激光雷达:通过技术创新能够生产出可量产的、低成本的、满足车规级标准的激光雷达,是非常有价值的产品。核心要考察的问题是:是否有满足车规级标准的可用产品, ? 细分领域的完整解决方案:对标OTTO,能够真正完成某个场景下自动驾驶从头到尾的工作。细分场景的发展路径是:半封闭低速(景区园区通勤、粮食运输、港口码头)-> 高速公路(高速货运、客运)->半封闭营运(限定区域乘用车)->城市道路商用。当然我们还要考察两个问题:1、细分场景的市场空间是否足够大 2、从该场景往更通用的场景发展,技术上是否有延续性。 ? Fusion做的更好的感知系统:在激光雷达成本难以快速下降的时间里,通过fusion更好的发挥不同传感器的能力,真正解决Perception、Sensing、Positioning的问题,从而为快速积累数据提供可能。 ? 更加comprehensive的planning system:今天所有的Google、uber、baidu等自动驾驶公司的决策规模部分大都是应用rule base的方法来做的(将具体的交通规则写在程序里),而也有少量的公司(momenta等)会尝试使用deep learning的方式去做决策,学习司机驾驶行为。坦白讲,跟这么多公司和专家聊下来,我也不知道哪个靠谱。但很明显,交通永远是一个系统性问题,开奖,人们在尊重既定的交通规则的情况下,不同国家不同文化不同路况不同时段的行车策略都在发生各种难以琢磨的变化。如果我们把交通的安全性和效率当作最终目标,单纯基于rule base的planning有可能在早期阶段格格不入,尤其当大部分车辆是人开,少部分车辆是机器开的话,这种所谓的“弱势群体”就会招到在策略层面的挑战。一个不切实际的想法,如果车辆在理解基础交规的基础上(rule base),并拥有一个丰富经验的驾驶直觉(deep learning base),能够感知周围车辆的行为和动机(v2x base),那他才是一个不折不扣的老司机。 (责任编辑:本港台直播) |