本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【j2开奖】令人拍案叫绝的 Wasserstein GAN,彻底解决GAN训练不稳定问题(4)

时间:2017-02-06 23:44来源:香港现场开奖 作者:www.wzatv.cc 点击:
图:WGAN前作Figure 2。先分别将DCGAN训练1,20,25个epoch,然后固定生成器不动,判别器重新随机初始化从头开始训练,对于第一种形式的生成器loss产生的梯

  图:WGAN前作Figure 2。先分别将DCGAN训练1,20,25个epoch,然后固定生成器不动,判别器重新随机初始化从头开始训练,对于第一种形式的生成器loss产生的梯度可以打印出其尺度的变化曲线,可以看到随着判别器的训练,生成器的梯度均迅速衰减。注意y轴是对数坐标轴。

  第二种原始GAN形式的问题

  一句话概括:最小化第二种生成器loss函数,会等价于最小化一个不合理的距离衡量,导致两个问题,一是梯度不稳定,二是collapse mode即多样性不足。WGAN前作又是从两个角度进行了论证,下面只说第一个角度,因为对于第二个角度我难以找到一个直观的解释方式,感兴趣的读者还是去看论文吧。

  如前文所说,Ian Goodfellow提出的“- log D trick”是把生成器loss改成

  上文推导已经得到在最优判别器D*下

  我们可以把KL散度(注意下面是先g后r)变换成含D*的形式:

  

【j2开奖】令人拍案叫绝的 Wasserstein GAN,彻底解决GAN训练不稳定问题

  由公式3,9,10可得最小化目标的等价变形

  

  注意上式最后两项不依赖于生成器G,最终得到最小化公式3等价于最小化

  这个等价最小化目标存在两个严重的问题。第一是它同时要最小化生成分布与真实分布的KL散度,却又要最大化两者的JS散度,一个要拉近,一个却要推远!这在直观上非常荒谬,在数值上则会导致梯度不稳定,这是后面那个JS散度项的毛病。

  第二,即便是前面那个正常的KL散度项也有毛病。因为KL散度不是一个对称的衡量,KL(Pg || Pr)与 KL(Pr || Pg) 是有差别的。以前者为例

  

  换言之,KL(Pg || Pr) 对于上面两种错误的惩罚是不一样的,第一种错误对应的是“生成器没能生成真实的样本”,惩罚微小;第二种错误对应的是“生成器生成了不真实的样本” ,惩罚巨大。第一种错误对应的是缺乏多样性,第二种错误对应的是缺乏准确性。这一放一打之下,生成器宁可多生成一些重复但是很“安全”的样本,也不愿意去生成多样性的样本,因为那样一不小心就会产生第二种错误,得不偿失。这种现象就是大家常说的collapse mode。

  第一部分小结:在原始GAN的(近似)最优判别器下,第一种生成器loss面临梯度消失问题,第二种生成器loss面临优化目标荒谬、梯度不稳定、对多样性与准确性惩罚不平衡导致mode collapse这几个问题。

  实验辅证如下:

  

【j2开奖】令人拍案叫绝的 Wasserstein GAN,彻底解决GAN训练不稳定问题

  图:WGAN前作Figure 3。先分别将DCGAN训练1,20,25个epoch,然后固定生成器不动,判别器重新随机初始化从头开始训练,对于第二种形式的生成器loss产生的梯度可以打印出其尺度的变化曲线,可以看到随着判别器的训练,蓝色和绿色曲线中生成器的梯度迅速增长,说明梯度不稳定,红线对应的是DCGAN相对收敛的状态,梯度才比较稳定。

  第二部分:WGAN之前的一个过渡解决方案

  原始GAN问题的根源可以归结为两点,一是等价优化的距离衡量(KL散度、JS散度)不合理,二是生成器随机初始化后的生成分布很难与真实分布有不可忽略的重叠。

  WGAN前作其实已经针对第二点提出了一个解决方案,就是对生成样本和真实样本加噪声,直观上说,使得原本的两个低维流形“弥散”到整个高维空间,强行让它们产生不可忽略的重叠。而一旦存在重叠,JS散度就能真正发挥作用,此时如果两个分布越靠近,它们“弥散”出来的部分重叠得越多,JS散度也会越小而不会一直是一个常数,于是(在第一种原始GAN形式下)梯度消失的问题就解决了。在训练过程中,我们可以对所加的噪声进行退火(annealing),慢慢减小其方差,到后面两个低维流形“本体”都已经有重叠时,就算把噪声完全拿掉,JS散度也能照样发挥作用,继续产生有意义的梯度把两个低维流形拉近,直到它们接近完全重合。以上是对原文的直观解释。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容