大多数框架,如 TensorFlow,Theano,Caffe 和 CNTK 都是静态的。使用者必须构建一个神经网络,并重复使用相同的结构。更改网络表现的方式意味着必须从头开始。 PyTorch 使用一种被称为反向模式自动微分(Reverse-mode auto-differentiation)的技术,能够让用户以零延迟或开销的方式任意改变网络表现。我们的灵感来源于几个相关话题如 autograd,autograd,Chainer 等的研究论文,包括当前的和过去的论文。 虽然这种技术不是 PyTorch 独有的,但它是迄今为止最快的实现之一。在研究中使用 PyTorch,你将得到最快的速度和最好的灵活性。 以Python为先 PyTorch 不是把 Python 绑到 C++ 框架上去,而是深度集成到 Python 语言中。你可以可以就像你用 numpy / scipy / scikit-learn 之类的一样使用。你可以用 Python 本身写新的神经网络层,可以用你最喜欢的库或者包,例如 Cython 和 Numba。我们的目标是尽量不要重新造轮子。 实践经验 PyTorch 符合直觉、好理解、易用。当你执行一行代码,它马上运行,不是跟异步的。当你进入 debug 或者收到错误信息进行 stack trace,atv直播,都很容易理解。stack trace point 就是你代码的地方。我们不希望你因为差劲的 stack trace 或者 不同步和模糊的运行,而花上几个小时 debug。 又快又稳 PyTorch 具有最小的框架开销。 我们集成加速库,如英特尔MKL和NVIDIA(CuDNN,NCCL),以最大化速度。 在核心,它的CPU和GPU Tensor和神经网络后端(TH,THC,THNN,THCUNN)作为独立的库用 C99 API编写。 它们是成熟的,已经测试了多年。 因此,PyTorch是相当快 - 无论你运行小或大的神经网络。 相比 Torch 或其他一些框架,PyTorch的内存使用是非常高效的。 我们为GPU编写了自定义内存分配器,以确保您的深度学习模型具有最大的内存效率。 这使你能够训练比以前更大的深度学习模型。 轻松扩展 编写新的神经网络模块,或 PyTorch的Tensor API 的使用,其设计非常直接和最小的抽象。 你可以使用torch API或你最喜欢的基于numpy的库(如SciPy)在 Python 中编写新的神经网络层。 如果你想用C / C ++编写你的图层,我们提供一个基于cffi的扩展API,它是高效的,并且有最小的样板。没有需要编写的包装代码。 你可以在这里看到一个例子:https://github.com/pytorch/extension-ffi 目前使用PyTorch的公司:
新智元招聘
职位 运营总监 职位年薪:36- 50万(工资+奖金) 工作地点:北京-海淀区 所属部门:运营部 汇报对象:COO 下属人数:2人 年龄要求:25 岁 至 35 岁 性别要求:不限 工作年限:3 年以上 语 言:英语6级(海外留学背景优先) 职位描述 负责大型会展赞助商及参展商拓展、挖掘潜在客户等工作,人工智能及机器人产业方向 擅长开拓市场,并与潜在客户建立良好的人际关系 深度了解人工智能及机器人产业及相关市场状况,随时掌握市场动态 主动协调部门之间项目合作,组织好跨部门间的合作,具备良好的影响力 带领团队完成营业额目标,并监控管理项目状况 负责公司平台运营方面的战略计划、合作计划的制定与实施 岗位要求 大学本科以上学历,硕士优先,要求有较高英语沟通能力 3年以上商务拓展经验,有团队管理经验,熟悉商务部门整体管理工作 对传统全案公关、传统整合传播整体方案、策略性整体方案有深邃见解 具有敏锐的市场洞察力和精确的客户分析能力、较强的团队统筹管理能力 (责任编辑:本港台直播) |