当时通过Hadoop存储数据,使用Hive建立离线的脚本清洗、分区、加工。用户浏览产品的页面、使用的功能、停留的时间都能构成用户画像的基础。 我曾经很好奇什么是用户画像,因为网络上说用户的性别、地域、年龄、婚姻、财务、兴趣、偏好是构成用户画像的基础。 但是我们的业务获取不到那么多数据。而我认为,用户画像是为了业务服务的,它不该有严格统一的标准。只要在业务上好用,就是好的用户画像。 就像在线视频的用户画像会收集电影的演员、上映时间、产地、语言、类型。还会细分到用户是否快进,是否拖拽。 这些都是以业务为导向。甚至视频网站的分析师们本身就得阅片无数,才能根据业务分析。 不然那么多电影类目和类型,如何细分各类指标?能通过拖拽快进去判断用户是否有兴趣,自身也得用过类似行为才能理解。 零基础怎么学习行业和业务知识?如果本身和业务接触,只是想做数据分析,难度小不少。如果像当初的我一样,既没有义务知识又不懂数据,也是可以的。 数据如果是假设性思维学习的话,那么业务应该是系统性思维学习。业务知识也需要一个目的和方向,但是和数据分析不同。业务注重的是系统性,系统性不是大而全,而是上而下的结构知识。先瞄准一个方向钻取深度,广度会随着深度的挖掘逐渐拓展。 比如你是一个外行,想学用户运营体系的分析,不要先考虑啥是用户运营,这问题太大。而是瞄准一个方向,例如活跃度,了解它的定义和含义,再想怎么应用。线下商场的活跃度如何定义,医院患者的活跃度如何定义,某个学校社团的活跃度如何?拿身边例子去思考活跃度。商场的活跃,可以是走来走去的人流,可以是进行消费购物的客流,可以是大包小包的土豪。什么因素会影响活跃?促销还是打折,节假日还是地理。等这些问题想通了,上手用户运营会很快。 再通过同样的思维去想留存、去想拉新。就会知道,如果商场的人流下次继续来消费,就是留存,有新客人来,就是拉新。这又有哪些因素互相影响?最后的知识思维一定是金字塔结构的。上层是用户运营,中间是拉新、活跃、留存。下层是各个要点和要素。 数据分析的学习注重演绎和推理,业务的学习注重关联和适用,学以致用就是说的这种情况。期间也会用到好奇心和假设,这两点都是加速学习的途径之一。 实际上说了这么多,对于零基础想当数据分析师的同学来说,可能仍旧有一些云山雾罩吧。 这些软技能也不会助人一步登天的,其实的七周成为数据分析师,从最开始我也说过是入门的大纲。重要的是自己是否真的想学和学好,师傅领进门,修行靠个人,其他一切都是虚的。 想起很久以前看的一句鸡汤话,当你想要前行时,一切都会为你让路。我想这比我说的一切都更有力。 所以你问我零基础能成为数据分析师吗?我的回答是能。 文章其实有一些赶,最后祝大家圣诞快乐。 (责任编辑:本港台直播) |