本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【j2开奖】机器之心年度盘点 | 从技术角度,回顾2016年语音识别的发展(3)

时间:2016-12-26 21:33来源:本港台直播 作者:j2开奖直播 点击:
另外,大家还在研究更好的识别算法。 这个「更好」有几个方面:一个方面是能不能更简单。 现在的模型训练过程还是比较复杂的 ,需要经过很多步骤。

另外,大家还在研究更好的识别算法。这个「更好」有几个方面:一个方面是能不能更简单。现在的模型训练过程还是比较复杂的,需要经过很多步骤。如果没有 HTK 和 Kaldi 这样的开源软件和 recipe 的话,很多团队都要用很长时间才能搭建一个还 OK 的系统,即使 DNN 的使用已经大幅降低了门槛。现在因为有了开源软件和 recipe,包括像 CNTK 这样的深度学习工具包,事情已经容易多了,但还有继续简化的空间。这方面有很多的工作正在做,包括如何才能不需要 alignment 、或者不需要 dictionary。现在的研究主要还是基于 end-to-end 的方法,直播,就是把中间的一些以前需要人工做的步骤或者需要预处理的部分去掉。虽然目前效果还不能超越传统的 hybrid system,但是已经接近 hybrid system 的 performance 了。

另外一个方面,最近的几年里大家已经从一开始使用简单的 DNN 发展到了后来相对复杂的 LSTM 和 Deep CNN 这样的模型。但在很多情况下这些模型表现得还不够好。所以一个研究方向是寻找一些特殊的网络结构能够把我们想要 model 的那些东西都放在里面。我们之前做过一些尝试,比如说人在跟另外一个人对话的过程中,他会一直做 prediction,这个 prediction 包括很多东西,不单是包括你下一句想要说什么话,还包括根据你的口音来判断你下面说的话会是怎样等等。我们曾尝试把这些现象建在模型里以期提升识别性能。很多的研究人员也在往这个方向走。

还有一个方向是快速自适应的方法—就是快速的不需要人工干预的自适应方法(unsupervised adaptation)。现在虽然已经有一些自适应的算法了,但是它们相对来说自适应的速度比较慢,或者需要较多的数据。有没有办法做到更快的自适应?就好像第一次跟一个口音很重的人说话的时候,你可能开始听不懂,但两三句话后你就可以听懂了。大家也在寻找像这种非常快还能够保证良好性能的自适应方法。快速自适应从实用的角度来讲还是蛮重要的。因为自适应确实在很多情况下能够提升识别率。

三、语音识别历史的梳理

在这一部分我简单的梳理了一下语音识别历史上比较关键的一些时间点,至于详细的语音识别技术研究历史可参考之前提到的黄学东老师写的《四十年的难题与荣耀——从历史视角看语音识别发展》。

1952 年,贝尔实验室 Davis 等人研制了世界上第一个能识别 10 个英文数字发音的实验系统,但只能识别一人的发音。

1962 年,IBM 展示了 Shoebox。Shoebox 能理解 16 个口语单词以及 0-9 的英文数字。

1969 年,贝尔实验室的 John Pierce 预言成熟的语音识别在数十年内不会成为现实,因为它需要人工智能。

1970 年,普林斯顿大学的 Lenny Baum 发明隐马尔可夫模型(Hidden Markov Model)。

20 世纪 70 年代,卡耐基梅隆大学研发 harpy speech recognition system,能够识别 1011 个单词,相当于 3 岁儿童的词汇量。

20 世纪 80 年代,语音识别引入了隐马尔可夫模型(Hidden Markov Model)。

20 世纪 90 年代出现首个消费级产品 DragonDictate,由国际语音识别公司 Nuance 发布。

2007 年,Dag Kittlaus 和 Adam Cheyer 创立 Siri.Inc。后被苹果收购并于 2011 年首次出现在 iPhone 4s 上。

2009 年以来,借助机器学习领域深度学习研究的发展以及大数据语料的积累,语音识别技术得到突飞猛进的发展。

2011 年微软率先取得突破,使用深度神经网络模型之后,语音识别错误率降低 30%。

2015 年,IBM Watson 公布了英语会话语音识别领域的一个重大里程碑:系统在非常流行的评测基准 Switchboard 数据库中取得了 8% 的词错率(WER)。

语音识别,在这一年有了极大的发展,从算法到模型都有了质的变化,在加上语音领域(语音合成等)的其他研究,语音技术陆续进入工业、家庭机器人、通信、车载导航等各个领域中。当有一天,机器能够真正「理解」人类语言,并作出回应,那时我们必将迎来一个崭新的时代。

  拓展阅读:

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容