本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

【j2开奖】谷歌新目标——让计算机实现自我编程,自主机器时代不再遥远(2)

时间:2016-11-28 21:14来源:118论坛 作者:118KJ 点击:
另一个例子来自Siri 的继承者——Viv。Wired 最近的一篇报道中写道,Viv 不仅使用一系列的自然语言处理来 实现 语言识别, 还基于英语词汇建立了复杂的自

  另一个例子来自Siri 的继承者——Viv。Wired 最近的一篇报道中写道,Viv 不仅使用一系列的自然语言处理来实现语言识别, 还基于英语词汇建立了复杂的自适应性计算机程序。代码自己写代码(Code writing code)。由于被写入的代码是经过Viv的开发人员自己训练和专门化的,所以这里的“写代码”并不是我们通常所说的写代码的能力,但这确实是一个大的进步。

  在这个方向上,另一个大的进步来自非专业领域。Emil Schutte 曾有过一句非常具有挑衅性的言论:厌倦了写代码?我也是!让Stack Overflow来做这件事吧。他分享了一个例子来证明这一概念,从Stack Overflow 的大型编程数据库中提取完整的工作代码,来提供完整的功能代码块,但是,这样得到的模块还是基于已经写好的代码。

  DeepMind 的尝试

  实际上更早之前,DeepMind 团队开发了一个“神经编程解释器”(NPI),能自己学习并且编辑简单的程序,排序的泛化能力也比序列到序列的 LSTM 更高。描述这项研究的论文《神经程序解释器》(Neural Programmer-Interpreters),被评选为 ICLR16 最佳论文。

  NPI 是一种递归性的合成神经网络,能学习对程序进行表征和执行。NPI 的核心模块是一个基于 LSTM 的序列模型,这个模型的输入包括一个可学习的程序嵌入、由调用程序传递的程序参数和对环境的特征表征。这个核心模块的输出包括,一个能指示接下来将调用哪个程序的键、一个经典算法程序的参数,以及一个能指示该程序是否该停止的标记。除了递归性内核外,NPI 构架还包括一个内嵌的可学习程序的键值内存。这种程序-内存的结构对于程序的持续学习和重用是极其重要的。

  

【j2开奖】谷歌新目标——让计算机实现自我编程,自主机器时代不再遥远

  图 6:NPI 与 序列到序列 LSTM 对不同长度的序列进行排序的准确率对比,最长序列含有20个数组。

  NPI 有三个拥有学习能力的部件:一是任务未知的递归内核,二是持续键值程序内存,三是基于特定领域的编码器,这个编码器能在多个感知上有差异的环境中让单一的 NPI 提供截然不同的功能。通过合成低层程序表达高层程序,NPI 减少了样本复杂性,同时比序列到序列的 LSTM 更容易泛化。通过在既有程序的基础上进行建构,程序内存能高效学习额外的任务。NPI 也可以利用环境缓存计算的中间结果,从而减轻递归隐藏单元的长期存储负担。

  不过,当时 DeepMind 团队并未使用无监督学习的方法的训练 NPI,其模型也只能学习合成若干种简单的程序,包括加法、排序和对 3D 模型进行正则化转换。不过,单一 NPI 能学会执行这些程序以及所有 21 个关联子程序。

  田渊栋对计算机自我编程的研究综述

  Facebook 人工智能实验室研究员田渊栋在他提交 ICLR17 的文章中,就有一篇研究了这方面的问题。

  

【j2开奖】谷歌新目标——让计算机实现自我编程,自主机器时代不再遥远

  论文摘要:构建能够通过自动推断(infer),atv,将一组输入映射到输出的计算机程序仍是一个开放且极具挑战性的问题。由于在可能的程序上存储着巨大的搜索空间,并且需要处理高阶逻辑(如 for循环或递归),所以程序进行归纳(induction)任务是很困难的。在本文中,我们使用 Hierarchical Generative Convolutional Neural Networks(HGCNN),自动根据输入/输出对生成程序。HGCNN 以层次式预测候选代码串,由此可以使用标准的搜索技术来构造程序。应当注意,该模型仅使用随机生成的程序进行训练,因此可被视为一种无监督学习的方法。我们证明,文中所提出的方法可以生成程序,从简单的 Swap 到更复杂的循环和分支(比如找到一串数组中的最大值)。我们还展示了使用该方法,在实现诸如 Bubble Sort 等嵌套循环程序时取得的不错结果。将 LSTM 等作为比较的基础,新方法的预测精度有了显著的提高。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容