正如刚才引用摩根士丹利的分析师所说:“它们的数据没有一英里是由完全的自动驾驶所取得。”这种说法可能有点夸张,但无疑在 Uber 或特斯拉的各种传感器,会在真人驾驶汽车时时进行收集,而自动驾驶系统就会根据实际的行车状况,进行“模拟自动驾驶”,而不是真正的“自动驾驶”测试。
事实上截至本年 10 月,特斯拉的“真实自动驾驶”里数只有 1.3 亿英里(约 2.1 亿公里),远远不如 Musk 早前夸口的 10 亿美里。故此,特斯拉的“自动驾驶”测试,仍然惹来巨大的争议。 不过,特斯拉取得的数据虽然并非“自动驾驶”的数据,但仍然是“真实世界“的数据,车子的确能透过这些“真实世界”来训练视觉辨识,也能学习人类的实际驾驶习惯。这些实际数据,绝非在实验室模拟所能相提并论。 那为什么特斯拉的“虚拟数据”仍然会带来争议?就是因为“实际世界”的环境,可能远超我们的“虚构”的景像。 当虚拟化为现实? 虽然媒体把特斯拉的自动驾驶汽车吹嘘得天花乱坠,但实际上在早前《消费者报告》最新的汽车可靠性报告里,特斯拉却几乎垫底。即使我们信得过人工智能,但特斯拉的产品真的可靠性吗? 在本年 6 月,特斯拉自动驾驶汽车发生了首次的致命交通意外:由于肇事车子的摄像镜头,无法分辨与天空混在一起的白色货车,使车子直接撞上这台货车而酿成致命意外。 在人类驾驶汽车时所收集“模拟自动驾驶”数据,真的有比较安全吗? 尽管特斯拉强调这是个别例子,但这个例子却能突显了:人类能分辨到、但机器不能分辨的障碍,很可能都变都没有被汽车数据化,全部变成了“灯下黑”。事实上,爱范儿早前就报道过,特斯拉最后在也为自动硬件进行升级,那就等于间接承认目前的自动驾驶仍然不够可靠,需要再加入新的硬件作为安全性的冗余。
特斯拉发生第一次致命交通意外后,特斯拉官方博客除了向遇难者致哀之外,仍然为自动驾驶汽车辩护:全球汽车的致命意外是每 6000 万英里一次,而在美国是每 9400 万公里一次,而特斯拉的自动驾驶?是 1.3 亿英里。从这数据看,即使特斯拉的自动驾驶汽车发生严重事故,貌似还是比人类驾驶汽车更安全。 然而,不幸地在本年 10 月,特斯拉再次发生致交通意外。 当意外化为意外数字 由于第二次意外发生在特斯拉自动驾驶的 2.22 亿英里后,所以在这次意外后,特斯拉的自动驾驶致命率,降至为每 1.11 亿英里一次,仅比美国汽车致命率稍低一点。不过,由于资料显示这次意外涉及偷车罪行,故此能否算是交通意外,仍然甚有争议。 但关键是这种数据争议有意义吗?根据调查机构 RAND 的数据,全美汽车行驶里数约 3 兆亿英里,而特斯拉的自动驾驶里数,连全美的 0.001% 也不到。由于“取样比例”远远偏低,“特斯拉自动驾驶汽车”的低致命意外机会率神话,其实在统计学上毫无意义。 更何况全美、或是全球的汽车意外率,当中各种我们能想像、或不能想像的客观环境:当中可能有保养不良的旧车;也可能有想自杀轻生的司机、或是跑危险路段的职业司机。但特斯拉的自动驾驶呢?所有能跑自动驾驶的特斯拉,就算再不可靠、状态再坏,都是近年出厂的新车;其机件出现严重故障的可能性,理应低于全球汽车水平。
而且,自动驾驶才刚登场不久,不少车主对它仍不太放心;他们未必会在危险路段使用、未必会在繁忙的高速路段上使用、也未必会在雨雪天气上使用;即使车主敢于尝鲜,也可能乖乖的把手放好在方向盘上,避免了意外,也降低了意外率。 简言之,如果大家真的要对特斯拉自动驾驶的意外率认真起来?事实上,目前的特斯拉自动驾驶的意外率,极有可能被严重低估,细思极恐啊。 “自动驾驶”真的比“人类驾驶”更安全? 让我们回到主题:造一台自动驾驶汽车一点也不难,难的是让自动驾驶汽车不犯错。 (责任编辑:本港台直播) |