高度的数学理论使得计算机科学的方法急速地发展起来。而计算机科学在解决原子能利用、宇宙开发中的问题等大量的实际问题时扮演了主要的角色。 Kolmogorov 在后面的数学史的叙述中也总是注重数学与其它诸学科的关联,同时也高度评价了由于数学内部的要求而推动的纯数学的发展。例如,在实际问题的应用这方面,古代希腊要落后于巴比伦,然而在数学的理论方面,希腊远远领先于巴比伦。他尤其赞颂了“存在无限多个素数”、“等腰直角三角形的斜边与另一边之间不存在公约数”等伟大发现。按着他详细说明了实际主义的巴比伦数学与理想主义的希腊数学是如何经过中世纪的阿拉伯数学,发展至欧洲的近代数学的过程,非常有趣。我从这个历史中学到了许多史实。例如,我以前知道变换群这个概念是在18世纪后半叶至19世纪初,由 Lagrange(分析)、 Galois(方程式论)等有效地使用了的。但我还想知道现在大学里讲授的(抽象)群的定义到底是由谁给出的。根据 Kolmogorov 的数学史,这个定义是由 A. Cayley 在19世纪中叶所给出的。 总之,Kolmogorov 的数学观是由他的数学上的独创性,对于数学应用所抱有的激情及对于数学发展的历史所具有的洞察。这几个方面所组成的,难以用一言来概之。如果一定要用一句话来总结,也许可以这样说: Kolmogorov把数学看成为可以无限制地成长的“生物体”。
柯尔莫哥洛夫 03 Kolmogorov 的数学业绩 Kolmogorov 写了上百篇论文,从中可以看出其特点是:“广泛的研究领域”、“引入新观点的独创性”及“明快的叙述”,其研究领域包括实变函数论、数学基础论、拓扑空间论、泛函分析、概率论、动态系统、统计力学、数理统计、信息论等多个分支。下面结合背景概述一下这些研究。 实变函数论 Kolmogorov 在莫斯科大学读书时参加了Stepanov的傅里叶级数讨论班,从那时(1921)开始,他对数学产生了与趣。当时,主要研究连续函数的微积分学正在向研究可测函数的实变函数论发展。这一新的数学领域受到了极大的关注。Kolmogorov 于1922年(19岁)时,通过引入集合演算,证明瞭包含“Borel 不可测解析集合的存在定理 (Suslin)”的新的定理。同年,他还成功地研究了“(形式上)傅里叶级数在几乎所有点上(以后又研究了所有点上)发散的上的可积函数的构成”。这些结果作为论文分别发表在《Mat. Sbornik》,1925及《Fund. Math.》,1923 (Doklady, 1925)。关于傅里叶级数、直交函数的展开,他也写了几篇论文。他还尝试了 Lebesgue 积分的推广,涉及了 Denjoy 积分的研究。这些大体上是1930年以前的研究工作。 概率论基础 Kolmogorov在概率论力面的一大功绩是用测度论的语言将概率论确立为现代数学的一个领域。以往对偶然事件、偶然量未加定义而使用。Kolmogorov 看出了概率与测度的同构型,在概率测度空间 (Ω,F,P) 上,分别将偶然事件定义为Ω的 F-可测子集,偶然事件的概率定义为这个子集的 P-测度,偶然量定义为Ω上的 F-可测函数,其平均值由积分定义。这样,概率论的理论展开就变得明确而容易了。 如此将概率作为测度来把握的方法,对于特殊问题 E. Borel(上例),N. Wiener(布朗运动)已经做过尝试。但用这个方法来对待所有问题的是 Kolmogorov 的《概率论的基本概念》。而 Kolmogorov 证明瞭在这种情况下有目的地构造出P的定理,这就是著名的 Kolmogorov 的扩张定理。 过去作为具体的测度一般仅考虑 Lebesgue-Stieltjes 测度和 Lie 群上的不变测度。由于 Kolmogorov 的测度论式的概率论,新型的概率测度及有关的新问题在对偶然现象的数学研究中不断地产生了出来。 概率论 Kolmogorov 受到 A.Y.Khinchin 的影响, 1925年前后开始研究独立随机变量的级数的收敛问题及发散时的阶数。按着研究了 Wiener 过程,在这些研究中,Kolmogorov 引入了几个新的思想和方法,Kolmogorov 0-1 律、Kolmogorov 不等式,Khinchin-Kolmogorov 三级数定理,Kolmogorov 强大数律,Kolmogorov 判别法,Kolmogorov 谱(湍流)等是特别著名的。1939年他还将弱平稳过程的内插、外推问题归结为傅里叶分析的问题而一举解决。 (责任编辑:本港台直播) |