据说翻译们纷纷调低了费用? 未来 Google 翻译除了帮你翻翻网页,还能写情书不? 深蓝 Deeper Blue 邀请了五位完全不同领域却又互相相关的嘉宾来谈论一系列问题——说清楚这一届机器翻译到底行不行。
Google 经历了一个进击的初秋。除了轰轰烈烈浩浩荡荡的秋季发布会,Google 还用它具有重大突破的翻译系统点燃了人们。 《连线》杂志的编辑 Cade Metz 记录了他所经历的一件趣事。今年三月,《连线》编辑部花了一整个月做了 Alapha Go 与李世石人机大战的封面报道,就在杂志下印刷厂之前,编辑部收到了一封激动人心的韩语邮件。 邮件的大意是这样:李世石在与 Alapha Go 败战之后已连赢五场世界顶级对战。正是人工智能将人类推向了新的巅峰。在与 Alapha Go 对弈之后,李世石表示正是机器开发了他对这古老对弈游戏的新理解。 编辑部差不多看懂的时候,当即决定把这一段很好的材料放进文章里去。但难题来了,新闻是用韩语写的,更多的细节需要精密翻译,而编辑部里面没有任何一个人懂韩语。于是,编辑们尝试用 Google 翻译来识别这则新闻,但网页上被翻译出来的英文只有零散的、毫无意义的病句。 没有办法,只好紧急搜罗韩语翻译。“如果我们能够等到新的 Google 翻译就万事大吉了。” Mets 在文中这样写道。这个故事巧合的地方是,直播,正是 Alapha Go 背后的科技—— 深度神经网络 —— 在 Google 翻译中扮演着重要的角色。
深度神经网络仿照人类大脑神经的相互连接系统,与安卓手机指令接收及脸书图像人脸识别系统一样,来自同一种人工智能技术分支。 Google 随后在论文《Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation》上表示,Google 神经机器翻译(GNMT)能够减少 60% 的翻译错误。 目前 Google 神经机器翻译系统已经支持中译英功能,可以看得出来 Google 对于未来的野心与规划。 Google 新的翻译系统用的是深度神经网络中一种叫 LSTM 的技术,即 “长短记忆型递归神经网络(long short-term memory)”。区别于之前的“阶段式机器学习” 翻译,LSTM 可以保持短期与长期的信息,就像人的记忆系统。这使得计算机分析一个句子的时候,在句子结束时仍能够记住开头的内容。 但 LSTM 系统最大的问题就是:慢。对于一个在线服务,要是一句话的翻译得等个一分钟,就不具备用户粘性了。Google 最大的功绩在于,用了许多的算法去改进模型,改进 LSTM 系统。 深度神经网络由层层数理计算(即线性代数)组成,每一层的算法结果都会辅助下一层的计算。谷歌采纳的一种技巧是在第一层完成的时候才启动第二层的计算。
▲ 图为 Google 翻译系统译出句子的过程。 但不少圈内人认为,Google 翻译速度的提升主要是因为拥有了强大的芯片技术支持,指的就是 TPU(Tensor Processing Unit)。有了 TPU,原本要处理 10 秒时间的句子只需要 300 毫秒便可完成。 不仅仅是 Google,所有的互联网巨头都在一个方向上赛跑,战争一触即发。从微软到百度,有能力的选手都入场了。如果说 Google 在芯片上表现卓著,那么微软也在运用其可编程芯片 FPGA 来执行神经网络,而百度正在开发不同类型的硅片。 深蓝 Deeper Blue 邀请了 5 位不同领域的代表人来一起聊一聊 Google 神经机器翻译的突破与局限,聊一聊机器翻译的未来。 他们中有来自学界的科研人员,有来自业界的从业人员,还有来自翻译一线的翻译家,虽然领域各自不同,但他们都关注着人工智能对翻译的影响。
/ 01 / (责任编辑:本港台直播) |