V2X的价值依赖于它的普及率,如果公路上的车辆V2V的覆盖率不是100%,那它的意义就会大打折扣,V2I则需要基础设施方面的大量投入。目前自动驾驶研发方面,媒体的聚光灯对准的依然是车厂,但如果要让V2X达到全覆盖,政府的作用是不可替代的。和任何一项大规模的基础设施投资一样,V2I的部署不可能一开始就规划全覆盖,而是先从局部开始,因为这样的投资必须考虑商业回报。我们可以设想,政府可能会先在几条主干高速公路部署V2I,例如G2京沪高速,长三角城市带高速等,以提升道路利用率,获得更高的商业回报。 今天,自动驾驶的感知和决策环节的主流技术发展方向逐渐清晰,即基于深度学习与增强学习结合的机器学习,但机器学习需要大数据的驱动才能达到高性能和高可靠性。这意味着,开发者需要将自动驾驶设备先安装到大量的车辆上,让车辆在实际运行中才能产生所需要的数据量,结果就会陷入鸡生蛋还是蛋生鸡的问题:一开始自动驾驶的可靠性不好,无法出售大量设备;设备量不足导致数据量不够,又会制约性能的提升。如果最开始先在某些特定应用方面进行部署,则可以逐步积累数据,提升性能,为更大范围的自动驾驶应用做好准备。 谷歌自动驾驶从七年前开始测试,到现在也只跑了3百万公里,而特斯拉的Autopolit从15年10月启用以来的多半年内,已经积累了1.6亿公里以上的行驶里程;Uber更夸张,摩根士丹利曾在一份报告中称:“Uber在24分钟内收集到的数据,就相当于谷歌自动驾驶汽车自诞生以来记录下的所有数据。” 这就是通过量产车积累数据的优势。说到底,基于数据驱动的技术必须在实践中才能完善,单个公司的测试规模有限,而且效率太低。在技术史上这样的例子不胜枚举,苹果在推出第一代iPhone的时候,上市后仅仅几周,用户就发现了几百个bug,这还是质量要求苛刻的乔布斯的作品。 同时,自动驾驶的开发还有高度的地域性特点,欧洲和北美的驾驶环境不同,中国的驾驶环境与欧美差异更大,比如司机变道频繁、人车混行严重等,车辆特征差异大、道路系统复杂等,这些本地化因素往往导致本来在欧美比较成熟的功能,如变道、过十字路口等,在中国实测的成功率急剧降低。从这个意义上讲,本地化的数据处理和自动驾驶决策算法开发是无法回避的,在这个问题上,地平线机器人与相当多的国外车厂和国际Tier 1都有广泛的讨论,各方都有高度认同。 历史的启迪 美国智库兰德公司在其发布的《驶向安全》报告中认为,自动驾驶的安全性需要数亿至数千亿英里,atv,才能验证其可靠性,凸显了在开放道路上全自动驾驶的复杂性,以及由此带来的在测试方法上的巨大挑战。 凭借在机器学习方面的出色成绩,地平线机器人在自动驾驶领域吸引了业界的广泛关注,同时,地平线定位于做自动驾驶解决方案的Tier 2供应商,与多家车厂和Tier 1保持了广泛的沟通,并与其中的多家合作伙伴进行了深入合作,这样的一个比较偏上游的定位,给了地平线一个很好的视角,去观察并思考这个行业,更多地从市场真实需求从出发,去制定相应的技术路线图,在通往完全无人驾驶的终极目标的路上,确定了较多的中间节点。我们相信ADAS依然会持续演进,从目前的Level2向Level3过渡,最终朝Level4的自动驾驶发展;而在技术研发上从感知,到三维场景语义理解,再到环境态势预判、路径规划,场景方面逐渐扩大其适用面,从高速公路到一般道路。同时,ADAS也会从外部感知扩展到对司机的感知和理解,确保在自动驾驶和手动驾驶方面的过渡可靠性。 一个有远大抱负的企业往往会希图毕其功于一役,一步到位将革命性的技术投入商业化。摩托罗拉一手开创了移动通信时代,当时移动通信最大的挑战是地面基站的覆盖面不足,并且基站之间的切换可靠性也很差,于是这个当时的技术巨人在发展新一代移动通信技术时,决定建设一个卫星通信系统,彻底解决这一问题,这就是著名的铱星系统,在技术上这是一个伟大的设想,但是令人始料未及的是,地面基站的建设速度超乎预期,并且在普及过程中可靠性逐步完善,而依靠摩托一己之力的铱星系统却独木难支,巨额投资导致服务费用高昂,盈利回报达不到预期,最终黯然退出市场。 (责任编辑:本港台直播) |