无论自动驾驶的应用场景是什么样,这背后始终有三个核心原则需要满足:技术上成熟度达到该应用场景的要求;投资成本可接受;投资回报达到突破点。相对于之前的有人驾驶,必须能够减少成本或者增加收益,并且这种商业收益是可以被量化的,一句话—— 部署自动驾驶就意味着省钱或者赚钱,否则只能落入作秀的场景。 因此,自动驾驶的商业化路径,在不同国家也势必各不相同,因为相同的应用场景,成本结构不同,例如出租车行业,美国的出租车人工成本显然要比中国高非常多,这也是Uber在自动驾驶技术的投入上如此激进的原因之一。 在国内,一线城市都在积极推动自动驾驶的测试实验区开发,背后的商业化驱动力不容忽视。北京市超过20%的路面是被汽车所占据的,而一辆私人汽车的实际利用率通常只有不到10%,超过90%的时间里都处于泊车状态,这带来了两个巨大的难题:停车难、拥堵(潮汐式通行,寻找停车位造成的局部路段拥堵)。解决之道呢,从传统上讲,需要修建更多的停车场,以及更多的道路,而这无可避免地要消耗土地,现在的一线城市土地是什么价?上海平均超过一个亿/亩,如果我们能利用自动驾驶提高车辆利用率,停车场就可以少建,如果少停10万辆车,则省出来的停车场面积至少是1.6平方公里,价值2400亿元!道路资源也是一样,如果可以利用自动驾驶结合绿波带通行,将道路利用率提升一倍,则很多道路就可以重新规划,例如减少新建道路,或者旧的道路连同小区集中拆除,做整体改造,对于土地的节约是显而易见的。 成本同样是无法忽视的,一项先进的技术,其商业化之路,往往是伴随着成本的下降逐步展开的。今天,我们的大部分汽车上都安装有雷达,但当雷达最初投入实用,是在二战前夕,1936年英国人在索夫克海岸架起了第一个雷达站,之后在二战中,雷达技术在巨大的军事需求下得到飞速发展,从地基防空雷达扩展到舰载雷达,随后机载雷达也出现了,之后雷达才渐渐步入民用,二十年前雷达才开始应用于汽车,而77GHz毫米波雷达在汽车上的应用只是近几年的事,这里面固然有技术的因素,但成本无疑是决定性的,毕竟汽车是大众消费品,成本的因素无法忽视,对于自动驾驶同样如此,在成本没有降低到一定程度之前,在乘用车上的普及是不可能的。 不可忽视的技术因素 目前,几乎所有的自动驾驶测试车都是基于自主感知的模式,也就是利用多种不同种类的传感器对环境进行感知。 但是,任何一种传感器都是有局限性的,而传感器融合并不是那么容易做到。例如,雷达探测到前方有强烈的回波并确认这是一个很大的障碍物,而摄像头却没有看到,这时该相信哪一种传感器的数据?而真实情况可能是前方有一个易拉罐,它放大了雷达的回波。 自动驾驶所需要的安全性如此之高,必须有多重冗余的感知手段,V2X在这里扮演了非常关键的角色。与摄像头或者雷达不同,V2X是一种精确感知手段,依靠802.11p或者5G通信,V2X可以在大得多范围内(室内300米,室外1000米)准确感知周围车辆的态势,包括其位置、车速、转向灯状态等,同时,通过与道路基础设施的通信,获得局部范围的精确地理信息;V2X使动态的车队组网成为可能,并且可以通过V2I,实现绿波带通行;V2X不会受到天气条件的影响,这一切是其它传感器难以企及的。可以说,V2X使自动驾驶的可靠性发生了质的飞跃。 但V2X是典型的依赖于标准的技术,这意味着其真正主导者只有一个:政府。目前,中国的V2X的标准还在制定中,LTE-V技术也才刚刚开始研究,距离实用化还有很长的路要走,这折射出政府决策的复杂性,这使得V2X部署时间很难预测,而局部封闭场所的V2X部署要容易得多,一家公司就可以在机场或者某个园区部署V2X,并且由于是封闭场所,不需要考虑互联互通,或者标准的问题,因此商业化实施的效率就很高。 (责任编辑:本港台直播) |