很多人,包括我自己在第一次听到这个观点的时候,可能都是一脸WTF的表情。但是从某个角度思考来看,或许英特尔说的真的有道理。确实,当我们提起同人工智能有关的硬件的时候,更多想起的会是高大的服务器机架和上面不停闪烁的指示灯,至少也是排成一排的TitanX和主板另一端的至强CPU,但非人工智能专业的人其实很少有人意识到,人工智能的开发和应用其实分为好几个阶段,其中只有“算法训练”这一个阶段是对强运算能力有着真真切切的需求的,从数据筛选、到算法开发、效果检验,甚至最终算法的应用都不需要太强的运算能力。 当然,一个好的项目中,算法训练应该是贯穿于整个应用过程中的,但是这也就意味着,拥有超强的计算能力并不是一块用于人工智能领域的芯片所需要的唯一特征。 而这就是英特尔最大的底气来源了,它对人工智能的理解其实丝毫不弱于NVIDIA,并且很清楚的知道自己擅长什么,可以去攻占哪里。让我们再回过头去,仔细看看英特尔CEO科再奇在博客中提到的英特尔转型后打算重点关注的领域,我们会发现其中有两点尤为关键: 一:物联网中“物”的不同形态:物联网中的几乎所有设备几乎都有两个明显的特征:体积小,且依靠电池驱动。对于这些设备来说GPU的体积和功耗显然都太大了,而FPGA和专用处理芯片则适合这些设备的多。这是英特尔的第一点机会。
对于物联网设备来说,这样体积的主板算大的了,但很显然即使这样一块板子上面也是不可能塞下一块GPU的,更不用说耗电了 二:连接性,前面提到在一个好的项目中,算法的训练应该是贯穿整个应用过程的,这样可以随时为消费者提供最好体验的服务。但是如果要将所有算法都集中于本地训练,不仅会面临计算瓶颈的问题,也容易面临从单个用户处收集到的数据量太少的尴尬。我们暂时不考虑很久以后可能出现的基于小样本的无监督学习的AI(那其实已经跟人差不多了),在目前AI的发展状况下,将所有数据集中于云端进行计算显然是更理性且有效的做法。而这就对通信提出了极高的要求,而英特尔恰巧在这个领域有着相当多的积累!虽然英特尔的通信部门连年亏损,但在现在的形势下,它却意外地有了新的价值与潜力。 以上两个业务都是NVIDIA从来没能进入过的领域,而它们同样是目前AI需要的。英特尔发现了这些领域,虽然这并不意味着它能在这些领域做好并获得成功,但这确实给了英特尔向NVIDIA和一众竞争者叫板的信心。而它现在的动作除了直接的竞争,也是为了告诉大家:我们在人工智能领域从来不虚NVIDIA,走着瞧! 勇于面对变化的人,运气都不会太差 英特尔确实面临着前所未有的挑战,但这其中并非没有机会。幸运的是,英特尔看到了机会,并且开始努力追赶这些领域中先行者的脚步。移动浪潮的来临曾让很多传统互联网大厂面临艰难的局面,但它们中坚定的进行了转型的那些,今天大多数到底是活了下来,有些甚至还过得不错。英特尔也是它们中的一员,它曾经是计算机行业的领军企业,而现在,英特尔的CEO科再奇也表示过希望英特尔能继续利用摩尔定律的价值,带领行业向前推进。目前的形势不容乐观,但一旦找到了正确的道路,英特尔或许仍有机会将局面完全扭转。 (责任编辑:本港台直播) |