2016年伴随着AlphaGo的横空出世,人工智能突然热了起来,这让大家本来在台面下默默进行的AI硬件竞争突然提升到了一个新的高度。眼睁睁的看着老对手NVIDIA由于本身就专注于优化GPU擅长的并行计算而借着这股东风混的风生水起。英特尔怎么甘心放过这个市场呢?更何况,由于目前极火的深度学习需要非常大的数据和计算量,本身就可以是云计算的重要服务对象之一。并且目前在深度学习市场FPGA尚未成气候,谷歌这样的超级大厂又喜欢自己研发专用芯片。因此可以说对于深度学习芯片来说,个人开发者及中小型企业内还有相当大的市场。这个市场内目前几乎只有NVIDIA一家成了气候的公司,英特尔想要强势进入未必没有机会。甚至即使英特尔最终无法超越NVIDIA,也能对后来者形成优势,稳坐老二。当然对于英特尔来说,他们肯定不会甘愿做老二,而一定是奔着老大的位置去的。 想揽瓷器活,有无金刚钻? 英特尔到底有没有机会绝地反击,在人工智能、深度学习领域重新夺回PC时代的领导者地位呢?我们认为英特尔其实还真不是一点机会都没有,尽管NVIDIA目前依靠着多年发展起来的GPU性能和配套的软件优化看似占尽了天时地利。但这其中,确实有着英特尔翻身的可能。 押注FPGA 去年6月,英特尔用史无前例的167亿美元巨款收购了著名的FPGA厂商Altera,当时业内对于英特尔此举的解读主要集中在服务器市场、物联网市场的布局上,英特尔自己对收购的解释也没有明确提到机器学习。但现在看来,或许这笔收购有相当程度是因为英特尔意识到了它在人工智能领域同样具有的潜力。 不管当时如何,至少现在英特尔肯定完全意识到了这笔收购在人工智能上带来的价值了,FPGA对GPU的潜力在于其计算速度与GPU不相上下,却在成本和功耗上对GPU有着显著优势。当然,劣势也有,这点我们最后再提,但是,FPGA的潜力是非常明显的。作为一个想要推向市场的商品来说,FPGA最需要克服,也是最容易克服的问题是普及程度——大部分PC都配有或高端或低端的独立GPU,对于个人进行的中小规模神经网络开发和训练来说,其实它们的性能已经基本足够。而FPGA却不是在电脑里能找得到的东西,而多见于各种冰箱、电视等电器设备及实验室中,因此想要搞到一块能用来开发深度学习的FPGA其实还挺麻烦的。可以想象,这也是英特尔将会着力解决的问题之一。
图片来源,EETimes 集成显卡——未被开发的处女地 可能有些人没意识到,其实英特尔在显卡的设计制造领域也有很强的能力,它甚至是全球最大的GPU生产商,因为目前市面上的很多低端电脑和超极本都没有配备独显,但几乎每一块英特尔的CPU中都有集成显卡,英特尔最初的意思是让这块集显帮忙进行日常的图形运算,让不需要运行高性能程序的使用者能用极低的成本得到一台能够使用的电脑。不过这几年集成显卡的性能以及越来越强,甚至已经达到了可以运行许多中型游戏的程度。Iris Pro Graphics 6200的理论性能甚至已经达到了中端独显的水平。但目前仍然没有人会用集显去做哪怕较小规模的深度学习,因为还是慢,但它们的计算能力明明就差别不大了,为什么速度还会差的这么大呢?接下来要谈到的就是我们想说的重点了: 软件!软件!软件! 现在的IT领域有一个很奇怪的现象,好多人一边说性能过剩了啊,一边看着自己手里的手机和电脑越来越卡,其实说到底这就是软件优化的问题。在同样的计算能力下,软件优化好的那一方能得到高得多的性能。GPU经过了NVIDIA这么多年的耕耘,已经有了相当完善的一套深度学习软件支持。NVIDIA的GPU对主流的深度学习平台,如Caffe、Theano、Torch等都有着极好的优化和兼容,还有自家的CuDA。而对于FPGA的优化就少了很多,因此现在基于FPGA的开发难度其实也是远远高于GPU的,j2直播,这也是前面提到的另一点FPGA的缺陷。 英特尔并不是一家软件公司,提到英特尔和软件,大家想起的最多的恐怕是它制造的各种硬件的驱动程序。但AI从来不是一个简单的事。如果想要在这个领域打出一片天,只管硬件是必然不行的。事实上,英特尔已经开始显现出自己在软件和算法上的努力,上周,英特尔中国宣布了自己在深度学习算法的一项创新:“动态外科手术”算法。这说明英特尔已经开始在算法理论上刻苦钻研。能在这个领域做出创新,说明英特尔已经对其算法有了深刻的理解了,相信下一步就是将这些理解用在将来深度学习芯片的优化上。 英特尔的底气 其实英特尔在不停与NVIDIA正面对刚的时候,还在试图告诉大家一件事: 其实GPU对深度学习来说并没有那么重要。 (责任编辑:本港台直播) |