交易策略的基本原理是:首先利用已有的数据集对贝叶斯网络进行推断,然后将最新的变量数据代入网络中,对未来的 K 线走势进行预测,再根据预测的概率结果,产生相应的交易信息号。此外,为了充分利用历史经验,我们为贝叶斯网络不断补充新知识,并实时更新结构。然而,必须要注意的是数据缺失会使K2 算法失效。因此如果出现数据确实的情况,我们就需要使用替代算法,如最大期望(Expectation Maximization,EM)等,数据缺失的交易策略暂不在考虑范围之内。 主要测试沪深 300 股指期货主力合约。策略的目的在于判断 K 线的收盘价和开盘价之间的相对位臵,从而获取两个位臵差之间的收益。
中信建投证券: 机器学习之贝叶斯文本分类算法的实现 解读分析: 这篇研报用的思想是在贝叶斯统计下的一些研究。 贝叶斯统计最基本的一个观点是:任一个未知量x都可看作一个随机变量,应用一个概率分布去描述对x的未知状况。这个概率是在抽样前就有的关于x的先验信息的概率陈述,称为先验分布。 贝叶斯统计的另一个基本概念是后验分布。后验分布是根据样本分布和未知参 数的先验分布,用概率论中求条件概率分布的方法,求出的在样本已知下,未知参数的条件分布。因为这个分布是在抽样以后才得到的,故称为后验分布。贝叶斯推断方法的关键是任何推断都必须且只须根据后验分布,而不能再涉及样本分布。 具体的贝叶斯推到公式网上很多,就不在这里阐述了。放一个贝叶斯公式就可以啦! BSW 套利策略 价差波动特点分析 套利交易的本质是价差交易,对于价差走势的准确预判是套利成功的关键。不管是均值回复型的套利策略,还是趋势型的套利策略,其本质都是预判未来价差将处于一个特定的水平,从而结合当前价差情况来执行套利。 价差波动大的情况: 首先, 价差的波动较大,对于价差的震荡重心较难把握。根据历史数据得到的“价差均值”往往在下一时间段不适用。 其次,价差的波动区间也不稳定。 价差稳定的情况: 套利策略会面临“无利可套”的困境。 因此,需要对价差的未来走势做出更准确的预估。当价差的短期走势与长期走势出现较大变化时,我们需要做出调整,平衡两种信息,以得到更好的预判。 为此引入贝叶斯统计学,看看可以在套利方面做些什么。 贝叶斯统计在价差预测上的应用 BSW 套利策略 根据贝叶斯公式,对未来价差做出预测后,接下来的工作就简单了。对比当前价差与预测价差,如果当前价差明显低于预测价差,我们就做多价差;反之, 则做空价差。待价差达到预测值后,平仓离场。该种套利策略我们称之为BSW套利策略。 BSW套利策略的详细步骤: 第一步,根据贝叶斯公式预测价差,求得预测值ES; (责任编辑:本港台直播) |