本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:【j2开奖】专访英特尔STO马子雅:开源BigDL,AI 民主化的一步妙棋(3)

时间:2017-04-14 03:29来源:天下彩论坛 作者:118开奖 点击:
对于具有极高模型维度和大量非常稀疏数据(例如,百亿到千亿级别的训练样本,十亿级甚至百亿级别特征)的用户,SparseML 可以显著地为他们提高机器学

  对于具有极高模型维度和大量非常稀疏数据(例如,百亿到千亿级别的训练样本,十亿级甚至百亿级别特征)的用户,SparseML 可以显著地为他们提高机器学习的可扩展性。许多互联网公司需要从大量的极度稀疏数据中学习模型,他们面临的挑战是现有的机器学习解决方案无法处理大量数据或高维度模型;通过利用数据稀疏性,对分布式机器学习数据结构、网络通信和算术运算的优化,SparseML 可以比现有开源的机器学习算法(例如Spark Mllib)提供更高的可扩展性。

  新智元:可以看出,Intel-analytics 在努力形成一个支撑各种应用场景的完整生态。那么,请允许我问一个比较具体的问题:如果我希望进行深度学习的图像分类,应该如何从英特尔的产品组合中选择呢?或者我要处理的数据里面既包括图像又包括音频,又该如何选择呢?

  马子雅:我们的目标是为机器学习用户和开发人员提供从硬件到软件的最简便、最完整和最高效的体验。

  为了选择最合适的解决方案栈,您需要评估一些事情:(1)您是否已有了现有的基础架构,并希望利用它来构建图像分类?(2)您最大的需求是什么:从现有的分布式文件系统/存储中直接访问数据存储,以实现快速的机器学习实验周期(turn-around time)?是与您现有的分析工作流程或平台轻松集成?还是可扩展性(处理大量训练样本或高维特征的能力),高资源利用率,低总拥有成本,训练性能等等?根据您对这些问题的回答,您可以选择不同的解决方案。

  在硬件层面,我们有各种产品可供选择,例如:Xeon,Xeon phi,FPGA。将来我们还会有LakeCrest(Nervana silicon);您可以挑选最适合您的需要的产品。

  在深度学习框架层面,我们正在推动 Neon 并将英特尔优化的MKL应用于深度学习框架,比如 Caffe,TensorFlow,Theano 和 Torch 等。如果您喜欢使用这些优化的框架,您可以直接使用它们或通过英特尔深度学习SDK来使用它们。

  如果您已经有了大数据(Hadoop/Spark)集群或大数据分析工作流,那么您很可能更倾向在现有的大数据基础架构中来进行深度学习。我们正在推动以 Spark /Hadoop 为数据分析和人工智能的统一平台,来支持端到端的学习工作流,包括从数据管理,特征管理,特征工程,模型训练到最后的结果评估;那么,BigDL 将会极大地适合你的需求。

  从开源到 AI 民主化

  新智元:英特尔在人工智能领域所提供的产品组合已经非常丰富了,其中包括了许多我们今天提到的开源项目,那么请问马女士,在英特尔人工智能的产业布局中,是如何认识“开源”这件事的意义呢?未来是否会有计划推出更多的开源项目呢?

  马子雅:开源项目有很多原因:

  1.建立一个更大的开发社区,可以检验我们的设计和解决方案(好不好?哪里好?哪里不好?……)。好的开发人员喜欢与好的开发人员合作,与好的项目合作。如果我们的项目流行得足以吸引到外部人员来贡献力量,那么我们就相当于创建了一个倍增的开发人员社区,帮助我们工作得更快更好;

  2.加速客户使用:随着我们的项目开源,它帮助更多的用户和客户从我们的工作中受益;他们的成功反过来会影响其他客户和用户使用这些解决方案。来自这些快速扩张的用户群的反馈也可以反过来影响我们的路线图和设计,以更好地服务用户的需求;

  3.开源项目也是我们为行业和社区支持 AI 的承诺做出的最好的展示。

  随着我们与行业客户和合作伙伴的继续合作,确定新的需求领域,我们将继续推动新的项目开源,就像我们这次为 BigDL 所做的。英特尔致力于开源协作,确保我们的客户和合作伙伴在英特尔硬件上拥有最佳、最简便、最完整的 AI 体验。

  新智元:在英特尔的人工智能战略中,Democratize AI 是一个非常重要的组成部分。请问英特尔是如何定义自己在人工智能领域的“ democratize ”的?准备采取什么举措来服务企业级用户和开发者?同时,又准备如何更好地服务已经习惯使用CPU来做深度学习项目的用户,比如高校、研究机构中的研究人员?

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容