本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:【j2开奖】专访英特尔STO马子雅:开源BigDL,AI 民主化的一步妙棋

时间:2017-04-14 03:29来源:天下彩论坛 作者:118开奖 点击:
【新智元导读】 英特尔公司软件与服务事业部副总裁、系统技术和优化部门大数据技术总监马子雅女士接受了新智元的专访,畅谈了 BigDL 的特点、应用、未来的改进,以及英特尔开源

  【新智元导读】英特尔公司软件与服务事业部副总裁、系统技术和优化部门大数据技术总监马子雅女士接受了新智元的专访,畅谈了 BigDL 的特点、应用、未来的改进,以及英特尔开源这一深度学习框架的初衷和意义。马子雅认为,作为 AI 民主化战略的重要实践之一,开源 BigDL 反映出“英特尔正致力于将我们的技术提供给我们的社区,为客户和开发人员释放 AI 在 IA 上的全部潜力”。

  作为 AI 民主化战略的重要实践之一,英特尔在 2016年 的最后一天,开源了基于 Apache Spark 的分布式深度学习框架 BigDL。最近,英特尔公司软件与服务事业部副总裁、系统技术和优化部门大数据技术总监马子雅女士接受了新智元的专访,畅谈了 BigDL 的特点、应用、未来的改进,以及英特尔开源这一深度学习框架的初衷和意义。正如马子雅女士所说,“BigDL 的目标是大大降低普通大数据用户和数据科学家,在使用深度学习进行数据分析和构建人工智能应用的门槛”,“英特尔致力于将我们的技术提供给我们的社区,为客户和开发人员释放 AI 在 IA (英特尔架构,Intel Architecture)上的全部潜力”。

  BigDL 原生地建立于 Hadoop/Spark 之上

  新智元:马女士您好。英特尔开源了基于 Apache Spark 的分布式深度学习框架 BigDL。请问和其他开源框架相比,BigDL 有什么特点?

  马子雅BigDL 的目标是大大降低普通大数据用户和数据科学家,在使用深度学习进行数据分析和构建人工智能应用的门槛。去年12月31日我们开源了 BigDL;开源社区对 BigDL 的积极采纳令人印象非常深刻:在短短一个月内,GitHub 上已获得 229 个用户克隆 BigDL 代(FORK)和1421个用户收藏(STAR)。今年2月波士顿举行了 Spark 峰会,在大会开幕主题演讲上,斯坦福大学教授、ApacheSpark 创建者、Databricks CTO Matei Zaharia 高度评价了 BigDL;到目前为止,包括 Databricks(Apache Spark 重要贡献者)云平台和微软 Azure HDInsight 云服务都提供了与 BigDL 的集成,方便其用户访问使用。此外,众多全球媒体包括 Infoworld,HPCwire,Datanami,HPC,infoq,InsideHPC,计算机商业评论,SiliconAngle,Oreilly 等,以及德国、日本和中国等各国媒体也对 BigDL 也进行了深入的报道。

  

报码:【j2开奖】专访英特尔STO马子雅:开源BigDL,AI 民主化的一步妙棋

  BigDL 是一个建立在大数据平台(Hadoop/Spark)之上原生的分布式深度学习库。它提供了在 ApacheSpark 上丰富的深度学习功能(和现有框架如 Caffe 和 Torch 等功能一致),以帮助 Hadoop/Spark 成为一个统一的数据分析平台,为整个数据分析和机器学习过程(包括训练/测试数据收集,数据的管理,转特征换,传统机器学习,开奖,深度学习,模型部署和服务等)提供比现有框架更加统一和集成化的体验。BigDL 程序是作为标准的 Spark 程序编写的,并且不需要对底层 Hadoop/Spark 集群进行更改;对于拥有(或将拥有)大数据基础架构的分析客户,可以在现有 Hadoop/Spark 集群上直接运行深度学习应用,不需要设置单独的训练集群,也无需在两个集群之间拷贝多版本的数据和模型,从而减少了端到端的学习延迟,并降低了总体成本。

  基于大数据平台的 BigDL 比现有的深度学习框架有更高效的横向扩展、容错性、弹性和动态资源管理;通过利用英特尔 MKL 和其他多线程优化方法,它在单节点 Xeon 上拥有极高的性能,并且可以轻松扩展到上百个节点。它还支持载入 Caffe / Torch 的预训练模型到 Spark 上,来进行特征提取、微调、预测等。

  新智元:英特尔准备如何把人们吸引到 BigDL 中来呢?

  马子雅我们始终相信,更好地满足用户需求的解决方案会得到更好的应用。

  近年来,随着我们与许多大数据分析和 AI 客户合作,他们的需求有几个明显的趋势:

  -客户体验和易用性:客户希望能在同一集群中、在现有的数据分析流水线上进行深度学习,以便轻松地与数据管理、特性工程、传统(非深度)机器学习集成;这样就能帮助他们消除在不同集群之间的多版本数据/模型的拷贝,降低端到端的机器学习延迟,将深度学习集成到现有的大数据分析工作流中管理,j2直播,并且实现动态、弹性的机器资源管理。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容