阿里云机器学习平台是一个大型机器学习平台。它首先是一个云计算平台,所有的训练,一切都可以在云中完成。 除此之外,这个平台还提供了图形界面(graphic interface),让人们能够将大数据分析与机器学习无缝整合。而在经历了一系列的分析以后,就会生成模型,这就是离线的训练阶段。在训练完成后,还必须做推理,服务模型,并且要学习,接受请求,并使用模型来开发,推断数据。
研究挑战 周靖人最后谈了 ASPLOS 研究社区面临的一些研究挑战,其中一个是对大数据分析有很大的需求。他以阿里数据中心支持实际业务为例,讲了数据中心必须支持广泛的计算场景,不能只将一个硬件分配到一个计算场景,必须考虑到这个硬件同时也会应用的其他计算场景。当时,为了需求,他们必须以 streamline 的方式将一种计算机转变(transform)为另一种计算机,随后自然就要需要应对异构硬件的问题。周靖人说,现在,阿里可以说是有了很多机器学习硬件,还有一些专用的处理器。 另一个挑战是算法是不断变化的。如果针对某个问题开发了一个特定的芯片或解决方案,解决方案和算法会随着时间的推移而改变,这样就会开发出很多特定的芯片和解决方案,然后就必须应对新的指令集,并在这么多不同的芯片上创造生态系统。 周靖人说,这些都是非常有趣的挑战,并号召研究人员多多交流学习。他说,事实上,做研究系统的人应该更多地从新人那里学习,融入研究社区可以发现自己想以怎样的方式参与硬件设计,参与为某种计算场景做架构支持的项目当中。 【进入新智元公众号,在对话框输入“ASPLOS”下载会议最佳论文】 中国科学技术大学王超副教授和博士生宫磊、万波对此文亦有贡献,特此感谢! 3月27日,新智元开源·生态AI技术峰会暨新智元2017创业大赛颁奖盛典隆重召开,包括“BAT”在内的中国主流 AI 公司、600多名行业精英齐聚,共同为2017中国人工智能的发展画上了浓墨重彩的一笔。 访问以下链接,回顾大会盛况: 阿里云栖社区: (责任编辑:本港台直播) |