加入峰瑞资本做投资之前,我在人工智能领域创业。下面,我从投资与创业交叉的角度和大家分享自己最近的一些观察,也欢迎随时交流。 先简单介绍一下,峰瑞资本是一家新基金,成立于 2015 年 8 月。我们希望做成一家研究型导向的全链条基金,不看风口,长期持有。我们比较早就开始看人工智能领域,已经投资了十余家 AI 领域的初创公司。 下面切入正题。 技术、人才红利都迅速放缓 过去在人工智能能领域创业的时候,大家会问我这些问题: 你的算法到底是什么?是不是深度学习的算法? 你是不是用了神经网络?神经网络多少层? 这是投资者或大众关注的第一点——“算法如何”? 然后,大家还会问: 你的团队里有 PHD 吗?有 BAT 研究院出来的人吗?有高校教授吗? 人工智能能刚刚起步时,大家的焦点基本集中在两个方面:算法和人才。 这两张图反映了我过去一段时间对这两个方面的观察。
第一张图,我称之为“技术的红利”。这张图是在 ImageNet 历年图像分类任务中获得第一名的算法的错误率。2013 年的时候,获得第一名的算法错误率是 13%,2014 年时是 7%,2015 年时是 3.6%,到 2016 年时变成 3.0%。大家可以看到,从 2013 年到 2014 年,错误率下降了近一半,从 2014 年到 2015 年,又下降了近一半,而 2015 年到 2016 年的时候,下降的幅度就变得很小了。 做技术的人应该都知道,在深度学习的框架下,以现有的技术处理图像分类任务的能力,错误率继续下降的空间已经不多了。看到这个结论,我非常吃惊。技术放缓的速度远比我们自己想象的要快。 第二张图,我称之为“人才的红利”。 横坐标是时间,纵坐标是工资。过去,人工智能公司招人都很贵。最近,我随机选取了一家非常知名的人工智能公司的招聘列表,2017 年时,这家公司招聘图像识别处理工程师的薪水是15—30K/m,已经和普通的 IOS 工程师差不多。 目前,大家普遍的认知是:人工智能领域,所做事情的框架已经日趋清晰明了,但人才缺口比较大,学校的供给不够。任何一家人工智能公司招人,都更倾向于熟练的、很快能将想法实践落地的人,倾向于招有一定专业院校和学术背景的人才。 通过上面两张图,atv直播,我想说的是:人工智能技术跟其它技术一样,到了一个阶段性平台期,技术红利放缓的速度非常快,人才供给发展的速度非常快。 对投资人来说,在人工智能创业的第一阶段,公司的估值就是 “算法 x 人才”。它们的乘积,大概就是你的公司在市场当中的价值。而目前,这个乘法的两端都在快速地下降,这是我们对第一阶段人工智能创业的的判断。 AI 公司估值的阶段论 我把人工智能赛道上的公司分成 5 个阶段: 1. 提供狭义技术的阶段 2. 提供解决方案的阶段 3. 提供模块化产品的阶段 4. 提供整体产品的阶段 5. 业务闭环数据循环阶段 大部分创业公司处在 “狭义细分技术” 的阶段。这一阶段,判断公司的标准就是我们刚刚提到的公式:“估值 = 算法x人才”。我们可以看到,这个公式下的公司,价值在被快速地拉平。在我看来,这一波的机会红利已经基本结束。 在这一阶段的人工智能创业浪潮中,获利最大的科学家创业团体,现在在创业上的优势不会那么大了。接下来,我相信机会仍然会留给产品经理、工程师和商业人才。过去的估值方式,过去的价值判断方式,和过去的技术、人才红利都已经基本结束。 现在,很多公司都已经进入第二阶段了。不论是图像公司还是语音公司,大家都开始进入提供解决方案的阶段。 在第二阶段,判断公司市场价值的方式也会发生变化。我自己列了一个公式,就是从 “算法x人才” 演变成 “估值=算法+数据x商业价值”。算法后面是一个加号,主要原因在于,大家都还没有数据和商业价值的时候,比的是算法,但是当大家都有了数据和商业价值后,商业价值的重要性会迅速地超过算法,所以算法所占的比重会越来越少。 人工智能并不是互联网的下一代 (责任编辑:本港台直播) |