所以结论就是:猎头默认的动作偏好是按照职位去找人,也就是“选单优先”。但是当平台给猎手推荐信息进行“智能匹配”时,他们又更愿意根据简历库中的人才去匹配职位。这是通过 GrowingIO 的用户行为数据分析我们发现的一个非常有趣的洞察。基于这个洞察我们做了两件事: 第一,优化搜索引擎。在精准匹配的算法优化上,我们选择优先做人才匹配职位的算法,而不是职位匹配人才。 第二,建立职位专场,类似淘宝的聚划算和微淘。 增长效果数据 最终的结果就是,猎上网在前三个季度的整体面试成单转化率提高了 80%。同时职位专场刺激了猎头激活,猎头的留存率得到提升,整体成单猎头数增长了 37%。并且,专场化的运营也使得人才职位匹配度提高,佣金客单价提升了 21 % 。后续,直播,我们又进一步做了“滴一猎头”和“人才画像”两个功能,增长效果也很明显。 这是猎上网通过 GrowingIO 进行整体用户行为数据分析,从中发现商业洞察并最终实现增长的一个有趣案例。这其中数据洞察非常重要的一点意义,在于让我们可以更好地知道怎样做资源调配。 产品前期开发中有许多功能要做,但当我们把用户行为偏好的洞察数据给到他们以后,产品就能清晰地知道应该怎样做不同算法调优的时间分配和优先级安排,实现资源的最优化利用,才能最终实现显著的业务增长。 本文作者:增长团队,集工程、产品、市场、分析多重角色于一身,负责拉新和用户活跃,用数据驱动业务增长。本文首发于 和公众号,授权转载。 (责任编辑:本港台直播) |