在这篇文章中,我跳过了部分概念的重要细节,以促进理解。为了全面理解多层感知器,我推荐阅读斯坦福神经网络教程的第一、第二、第三和案例研究部分。如果有任何问题或者建议,请在下方评论告诉我。 第一: 第二: 第三: 案例研究: 参考文献 1. Artificial Neuron Models (https://www.willamette.edu/~gorr/classes/cs449/ann-overview.html) 2. Neural Networks Part 1: Setting up the Architecture (Stanford CNN Tutorial) () 3. Wikipedia article on Feed Forward Neural Network (https://en.wikipedia.org/wiki/Feedforward_neural_network) 4. Wikipedia article on Perceptron (https://en.wikipedia.org/wiki/Perceptron) 5. Single-layer Neural Networks (Perceptrons) (~humphrys/Notes/Neural/single.neural.html) 6. Single Layer Perceptrons () 7. Weighted Networks – The Perceptron () 8. Neural network models (supervised) (scikit learn documentation) () 9. What does the hidden layer in a neural network compute? () 10. How to choose the number of hidden layers and nodes in a feedforward neural network? () 11. Crash Introduction to Artificial Neural Networks (~iag/CS/Intro-to-ANN.html) 12. Why the BIAS is necessary in ANN? Should we have separate BIAS for each layer? () 13. Basic Neural Network Tutorial – Theory (https://takinginitiative.wordpress.com/2008/04/03/basic-neural-network-tutorial-theory/) 14. Neural Networks Demystified (Video Series): Part 1, Welch Labs @ MLconf SF (https://www.youtube.com/watch?v=5MXp9UUkSmc) 15. A. W. Harley, "An Interactive Node-Link Visualization of Convolutional Neural Networks," in ISVC, pages 867-877, 2015 (link (~aharley/vis/harley_vis_isvc15.pdf)) ©本文为机器之心编译文章,转载请联系本公众号获得授权。 ?------------------------------------------------ 加入机器之心(全职记者/实习生):[email protected] 投稿或寻求报道:[email protected] 广告&商务合作:[email protected] (责任编辑:本港台直播) |