本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

wzatv:【j2开奖】基础 | 神经网络快速入门:什么是多层感知器和反向传播?(2)

时间:2016-11-26 18:47来源:本港台现场报码 作者:118KJ 点击:
输入层:输入层有三个节点。偏置节点值为 1。其他两个节点从 X1 和 X2 取外部输入(皆为根据输入数据集取的数字值)。和上文讨论的一样,在输入层不

输入层:输入层有三个节点。偏置节点值为 1。其他两个节点从 X1 和 X2 取外部输入(皆为根据输入数据集取的数字值)。和上文讨论的一样,在输入层不进行任何计算,所以输入层节点的输出是 1、X1 和 X2 三个值被传入隐藏层。

隐藏层:隐藏层也有三个节点,偏置节点输出为 1。隐藏层其他两个节点的输出取决于输入层的输出(1,X1,X2)以及连接(边界)所附的权重。图 4 显示了隐藏层(高亮)中一个输出的计算。其他隐藏节点的输出计算同理。需留意 *f *指代激活函数。这些输出被传入输出层的节点。

输出层:输出层有两个节点,从隐藏层接收输入,并执行类似高亮出的隐藏层的计算。这些作为计算结果的计算值(Y1 和 Y2)就是多层感知器的输出。

给出一系列特征 X = (x1, x2, ...) 和目标 Y,一个多层感知器可以以分类或者回归为目的,学习到特征和目标之间的关系。

为了更好的理解多层感知器,我们举一个例子。假设我们有这样一个学生分数数据集:

  

wzatv:【j2开奖】基础 | 神经网络快速入门:什么是多层感知器和反向传播?

两个输入栏表示了学生学习的时间和期中考试的分数。最终结果栏可以有两种值,1 或者 0,来表示学生是否通过的期末考试。例如,我们可以看到,如果学生学习了 35 个小时并在期中获得了 67 分,他 / 她就会通过期末考试。

现在我们假设我们想预测一个学习了 25 个小时并在期中考试中获得 70 分的学生是否能够通过期末考试。

这是一个二元分类问题,多层感知器可以从给定的样本(训练数据)进行学习,并且根据给出的新的数据点,进行准确的预测。在下面我们可以看到一个多层感知器如何学习这种关系。

训练我们的多层感知器:反向传播算法

反向传播误差,通常缩写为「BackProp」,是几种训练人工神经网络的方法之一。这是一种监督学习方法,即通过标记的训练数据来学习(有监督者来引导学习)。

简单说来,BackProp 就像「从错误中学习」。监督者在人工神经网络犯错误时进行纠正。

一个人工神经网络包含多层的节点;输入层,中间隐藏层和输出层。相邻层节点的连接都有配有「权重」。学习的目的是为这些边缘分配正确的权重。通过输入向量,atv,这些权重可以决定输出向量。

在监督学习中,训练集是已标注的。这意味着对于一些给定的输入,我们知道期望 / 期待的输出(标注)。

反向传播算法最初,所有的边权重(edge weight)都是随机分配的。对于所有训练数据集中的输入,人工神经网络都被激活,并且观察其输出。这些输出会和我们已知的、期望的输出进行比较,atv,误差会「传播」回上一层。该误差会被标注,权重也会被相应的「调整」。该流程重复,直到输出误差低于制定的标准。

上述算法结束后,我们就得到了一个学习过的人工神经网络,该网络被认为是可以接受「新」输入的。该人工神经网络可以说从几个样本(标注数据)和其错误(误差传播)中得到了学习。

现在我们知道了反向传播的原理,我们回到上面的学生分数数据集。

  

wzatv:【j2开奖】基础 | 神经网络快速入门:什么是多层感知器和反向传播?

图 5:多层感知器的前向传播

图 5 中的多层感知器(修改自 Sebastian Raschka 漂亮的反向传播算法图解:https://github.com/rasbt/python-machine-learning-book/blob/master/faq/visual-backpropagation.md)的输入层有两个节点(除了偏置节点以外),两个节点分别接收「学习小时数」和「期中考试分数」。感知器也有一个包含两个节点的隐藏层(除了偏置节点以外)。输出层也有两个节点——上面一个节点输出「通过」的概率,下面一个节点输出「不通过」的概率。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容