Magic Number可能有些抽象,我们需要对其量化。给大家举几个例子,Facebook发现用户10天内添加7个好友的留存度更高,Twitter发现用户10天内关注30个大V的留存率更高。这些Magic Number都是通过数据分析、数据挖掘的方式找出来的,并且有一套完成的方法论。 图13:Magic Number 的探索过程 第一步,确定产品 on boarding 功能。 一个社交类APP可能有多个on boarding功能,包括登录、添加好友、添加关注、发送消息、点赞、分享、上传文件等等。 第二步,分析用户行为与最终留存度之间的相关性。 如下图,用户一周内点击7次关注用户的留存度为57.5%,一周内点击5次关注博客的留存度为54.4%,一周内点击6次点赞或者评论的留存度为52.6%,均为强相关。 图14:不同行为组合与留存度之间的相关关系 第三步,筛选出合适的Magic Number。 根据公司目前的发展战略、操作成本、可执行性、A/B测试筛选出合适的Magic Number。假如这个APP产品目前发展战略是快速获取新用户、扩大市场,那我们可以将“一周内添加7个新用户”作为最终的Magic Number。 第四步,找到了最终的Magic Number,我们需要去执行、运营好它。 比如在这个社交APP里面鼓励用户添加好友,为用户更加精准的推荐好友。从而实现最初的目的,培养用户产品使用习惯、提高用户粘度,促进增长。 一旦留存提升上来,我们就可以做用户变现或者传播推荐,这样我们的用户才会慢慢增长。通过不断的市场拉新,留存的用户慢慢沉淀下来,成为我们的重要用户,是可以变现的。而那些不稳定的用户,我们还要做各样的产品和运营方面的改进,让他们逐渐变成留存用户、然后开始变现。 只有用户的留存度提升上来了,我们才能真正实现活跃用户的增长。 本文作者:檀润洋,GrowingIO 数据分析师。 加州大学圣地亚哥分校硕士,曾任职美国 Emas Pro、 Kyocera 分析师,丰富的数据分析技术和案例实战经验。回国后加入 GrowingIO,致力于为客户构建数据模型,实现业务增长。本文首发于GrowingIO博客和公众号,授权转载。 (责任编辑:本港台直播) |