此外,在那些充斥着学术竞争的尖端领域,学术人员还需要挑战同行、推翻假设。在 Airbnb 的数据科学部门,我们一样追求这种质疑精神:不安于现状,不断追求假设的边界,甚至是推翻假设。 ▌有效沟通 我们有时会看到一些资深的研究人员不善于沟通。然而 Airbnb 是一个充满协作的环境,j2直播,数据科学家不只是待在组内埋头研究,还需要与工程师、设计师、产品经理、和非技术人员进行合作。 Airbnb 不仅看中优秀的专业能力,更需要将所有观点有效地传递给受众,从组内其他的数据科学家,直至 CEO。否则观点就无法产生应有的影响。无论是书面还是口头的沟通,观点、方法和假设的表达都必须干脆利落、同时又能让听众心悦诚服。 ▌短跑而非马拉松 学术机构会允许研究人员花几年时间发表一篇论文,但在商业社会,这几乎是不可能的。 ▲ “效率至上” 是科学家在商业机构工作时需要拥有的思维。 这并不意味着我们同意牺牲研究质量,而是说在 Airbnb,我们更期待尽快看到第一手数据的产品,通过迭代来提升表现。在针对数据科学家的面试过程中,我们希望候选人拥有商业头脑,以及在提交数据产品或分享观点前,能尽快提供一个较为完美的解决方案。 / 02 / 如果你希望从学界进入商业社会,这里有 4 条小建议 对于不同专业领域的人来说,走出象牙塔的经历也会非常不一样。学术界和商界之间在今天连接更加紧密(尤其是计算机科学和应用经济学),一个新的想法从研发到应用于产品或许只有几个月的时间。对于希望跨出那一步的人来说,强大的编程能力和科学计算之类的 “硬知识” 固然必不可少,但是真正难掌握的是那些职场中的 “软知识”以及商业领域的思考逻辑。我们把这种逻辑分成了 4 个大的领域: ▌注意细节 我们的世界充满了复杂的细节和谜团。学术研究的作用之一,就是将核心问题从这些线团中抽象出来。 在学术机构中,科学家用来做实验的数据大多编排整齐、干净。作为基准的测试序列已经被他人测试过,整个实验也有非常详尽的记录。为了保险起见,有些人可能会做一些额外的数据清洗工作,但不管怎么清洗,至少实验所需的大部分信息都来自于数据本身,尤其是训练标签(trainng label)通常是已知的。只有在少数情况下,我们需要从一个严格控制变量的领域或者实验中收集数据,以确保数据没有受到污染。 ▲ 比起学术机构,商业环境里的实验环境总显得 “泥泞不堪”。 如此优秀的实验环境,在商业机构里几乎是天方夜谭。首先,研究人员需要花费大量时间和精力来设定问题。这些问题包括:从数据中提取、收集的标签(label),是否可以帮助我们解决问题?辅助变量的设计是否有漏洞?我们甚至有没有记录需要的信息?数据科学家需要深入问题,并利用专业知识将问题、数据转化为有意义的成果。和研究抽象的学术问题相比,在这种快节奏的环境里工作其实需要同等或者更多的创造力。 ▌80% 规则 学术和商业探究问题的方法不尽相同。前者希望找到尽可能优秀的解决方案,通过不断与之前的结果进行比较,提升实验质量。但如果在商业机构中工作,你常常会被分配到这样的工作:在一个先前没有任何研究成果的领域应用模型,你根本没有什么东西可以参照。这样做往好了说是一个挑战,往差了说,可能会对企业带来负面影响。 在这样的情况下,你只需要用 80% 的精力追求模型完美。如果过分精益求精,不仅会暴露你对目标缺乏优先级排序,更有可能根本就行不通:实验内外部的评估指标或许一点关系都没有。 ▌知识-影响有效点
▲ 即便不在学术机构里,你也可以用知识影响别人。 (责任编辑:本港台直播) |