前面的介绍主要侧重于N体,N体模拟对于无碰撞的暗物质是非常有效的,但是我们实际观测到的星系,其分布和暗物质的分布之间存在着紧密的联系。打个比方,这就像我们可以通过地球夜晚灯光的分布来了解人口聚集程度一样。星系就是点亮我们宇宙的灯火,我们的数值模拟同样也需要加入星系。
图9. 模拟中的一个星系,左图为其中气体的分布,右图为其中恒星的分布。我们能够看到清晰的漩涡星系的特征。(图片来源:Illustris project,) 我们先来看一个模拟星系的动画: 动画1. Eagle simuliation.(视频来源:) 星系形成的物理原理很复杂,其中一个最为重要的因素可能就是气体的冷却和反馈机制之间的平衡。让星系明亮的是其中的恒星。前面我们说过,宇宙在开始时是一团粥,恒星和星系都是随着宇宙结构的增长而逐渐出现的。恒星是正在进行核燃烧的气体球,其密度是非常高的,宇宙原初的气体从原初极端均匀的状态,塌缩成致密的气体云,进而在其中孕育恒星(图9)。但随着气体变得更加致密,引力势井也更深,气体的势能转化成热,这个热能将撑住引力而阻止进一步塌缩称为恒星。但是重子物质(气体)不同于暗物质,它能够冷却,也就意味着可以进一步的塌缩。实际上在模拟中,通常使用不同类型的粒子来分别代表气体和暗物质。随着恒星的形成,还要加入代表恒星的粒子。 恒星也并不是静止不变的,它们有自己的生命周期。有星风,有超新星爆发。这会把恒星粒子的质量再次交还给气体组分,同时改变了气体的温度、密度、压强等状态,进而改变下一代恒星的形成。也就是所谓“反馈(feedback)机制”。除了恒星,活动星系的中心核区(AGN)也可能提供反馈。这些反馈的影响甚至可以超出星系本身,最终剧烈地改变宇宙中的星系、以及星系中恒星的状态。 最后我们来看更大尺度上的一段视频,来自Illustris Project。左边的盒子显示的暗物质的分布,右边的盒子是同一个模拟的气体成分,盒子的转动是由于视角的转动,而不是宇宙真的在旋转。可以看到右边的气体成分基本跟随着暗物质的引力势井,在塌缩的过程中温度升高,在密集的地方形成星系,45秒之后看到有大量的爆发现象,这些就是气体的反馈机制的效应。 动画2. The illustris project. (视频来源:) 可见决定宇宙中的气体的状态不仅是复杂的,还相互依赖、前后有序的。另外必须意识到宇宙中的星系并不是独立演化的,星系和星系之间还会发生并合(merge),用理论的方法去处理并合时的细节是非常困难的,而在模拟中就很自然。这一点是高度非线性的,几乎无法从理论上计算出合并的细节。近年来,宇宙学流体模拟成功地重现了星系形态、内在结构和恒星质量函数等等重要的物理量。 9 展望未来 如果宇宙是一个海洋,星系就是一个个岛屿,而宇宙数值模拟就像一个水族馆。在其中我们不能指望发现一个我们没有放入的物种,但是我们可以学习到已知物种的行为的细节和它们之间的相互影响。天文学是无法进行孤立重复实验的,而宇宙数值模拟可以让研究者掌握它全部信息,因此在研究工作中成为了理论和观测之外的重要一极。 现在的数值模拟虽然取得了很大的成功,但其中还有很多细节值得商榷。未来是宇宙学气体数值模拟的大发展期,这不仅反映在计算量上(分辨力的提高),还在于气体演化的物理机制。从第一原理到恒星形成、星系形成之间还存在着一条鸿沟,这既是一个巨大的挑战,也是推动宇宙学和星系形成数值模拟发展的动力。 致谢 感谢李明、郭琦对本文内容建设性的讨论,以及苟利军、李然、钱磊、毛淑德给文章提出的修改意见。同时感谢中科院计算天体实验室和宇宙结构起源先导专项的支持。 作者简介: 王乔,2011年获北京大学天体物理博士学位,现为国家天文台副研究员,主要研究方向是数值模拟、宇宙大尺度结构和暗能量等。 延伸阅读 ① ② ③
投稿、授权等请联系:[email protected] (责任编辑:本港台直播) |