本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

无需数学背景,读懂ResNet、Inception和Xception三大变

时间:2017-08-20 04:54来源:668论坛 作者:j2开奖直播 点击:
无需数学背景,读懂ResNet、Inception和Xception三大变革性架构 2017-08-19 15:21 来源:机器之心 谷歌/计算机 原标题:无需数学背景,读懂ResNet、Inception和Xception三大变革性架构 选自Medium 作者

无需数学背景读懂ResNet、Inception和Xception三大变革性架构

2017-08-19 15:21 来源:机器之心 谷歌 /计算机

原标题:无需数学背景读懂ResNet、Inception和Xception三大变革性架构

选自Medium

作者:Joyce Xu

参与:Pandas

神经网络领域近年来出现了很多激动人心的进步,斯坦福大学的 Joyce Xu 近日在 Medium 上谈了她认为「真正重新定义了我们看待神经网络的方式」的三大架构: ResNet、Inception 和 Xception。机器之心对本文进行了编译介绍,更多架构可参阅机器之心文章《10 大深度学习架构:计算机视觉优秀从业者必备(附代实现)》。

过去几年来,计算机视觉领域中深度学习的诸多进展都可以归结到几种神经网络架构。除开其中的所有数学内容、代和实现细节,我想探索一个简单的问题:这些模型的工作方式和原因是什么?

在本文写作时,Keras 已经将这 6 种预训练模型集成到了库中:

VGG16

VGG19

ResNet50

Inception v3

Xception

MobileNet

VGG 网络以及从 2012 年以来的 AlexNet 都遵循现在的基本卷积网络的原型布局:一系列卷积层、最大池化层和激活层,最后还有一些全连接的分类层。MobileNet 本质上是为移动应用优化后的 Xception 架构的流线型(streamline)版本。但剩下的三个却真正重新定义了我们看待神经网络的方式。

本文的剩余部分将聚焦于 ResNet、Inception 和 Xception 架构背后的直观原理,并将解释为什么它们成为了计算机视觉领域后续许多成果的构建模块。

ResNet

ResNet 诞生于一个美丽而简单的观察:为什么非常深度的网络在增加更多层时会表现得更差?

直觉上推测,更深度的网络不会比更浅度的同类型网络表现更差吧,至少在训练时间上是这样(当不存在过拟合的风险时)。让我们进行一个思想实验,假设我们已经构建了一个 n 层网络,并且实现了一定准确度。那么一个 n+1 层网络至少也应该能够实现同样的准确度——只要简单复制前面 n 层,再在最后一层增加一层恒等映射就可以了。类似地,n+2、n+3 和 n+4 层的网络都可以继续增加恒等映射,然后实现同样的准确度。但是在实际情况下,这些更深度的网络基本上都会表现得更差。

ResNet 的作者将这些问题归结成了一个单一的假设:直接映射是难以学习的。而且他们提出了一种修正方法:不再学习从 x 到 H(x) 的基本映射关系,而是学习这两者之间的差异,也就是「残差(residual)」。然后,为了计算 H(x),我们只需要将这个残差加到输入上即可。

假设残差为 F(x)=H(x)-x,那么现在我们的网络不会直接学习 H(x) 了,而是学习 F(x)+x。

这就带来了你可能已经见过的著名 ResNet(残差网络)模块:

无需数学背景,读懂ResNet、Inception和Xception三大变

ResNet 模块

ResNet 的每一个「模块(block)」都由一系列层和一个「捷径(shortcut)」连接组成,这个「捷径」将该模块的输入和输出连接到了一起。然后在元素层面上执行「加法(add)」运算,如果输入和输出的大小不同,那就可以使用零填充或投射(通过 1×1 卷积)来得到匹配的大小。

回到我们的思想实验,这能大大简化我们对恒等层的构建。直觉上就能知道,比起从头开始学习一个恒等变换,学会使 F(x) 为 0 并使输出仍为 x 要容易得多。一般来说,ResNet 会给层一个「参考」点 x,以 x 为基础开始学习。

这一想法在实践中的效果好得让人吃惊。在此之前,深度神经网络常常会有梯度消失问题的困扰,即来自误差函数的梯度信号会在反向传播回更早的层时指数级地下降。本质上讲,在误差信号反向回到更早的层时,它们会变得非常小以至于网络无法学习。但是,因为 ResNet 的梯度信号可以直接通过捷径连接回到更早的层,所以我们一下子就可以构建 50 层、101 层、152 层甚至 1000 层以上的网络了,而且它们的表现依然良好。那时候,这在当时最佳的基础上实现了巨大的飞跃——这个 22 层的网络赢得了 ILSVRC 2014 挑战赛。

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容