本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:华中科大骆清铭:开启“脑空间信息计划”,连(8)

时间:2017-08-18 23:04来源:本港台直播 作者:www.wzatv.cc 点击:
Wang Q, Li A, Gong H, et al. Quantitative study on the hygroscopic expansion of spurr resin to obtain a high-resolution atlas of the mouse brain. Exp Biol Med (Maywood), 2012, 237: 1134–1141 Yang Z,

Wang Q, Li A, Gong H, et al. Quantitative study on the hygroscopic expansion of spurr resin to obtain a high-resolution atlas of the mouse brain. Exp Biol Med (Maywood), 2012, 237: 1134–1141

Yang Z, Hu B, Zhang Y, et al. Development of a plastic embedding method for large-volume and fluorescent-protein-expressing tissues. PLoS ONE, 2013, 8: e60877

Xiong H, Zhou Z, Zhu M, et al., Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nat Commun, 2014, 5: 3992

Jiang X, Shen S, Cadwell C R, et al. Principles of connectivity among morphologically defined cell types in adult neocortex. Science, 2015, 350: 6264: aac9462

Gong H, Zeng S, Yan C, et al. Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. NeuroImage, 2013, 74: 87–98

Xu D, Jiang T, Li A, et al. Fast optical sectioning obtained by structured illumination microscopy using a digital mirror device. J Biomed Opt, 2013, 18: 060503

Zheng T, Yang Z, Li A, et al. Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography. Opt Express, 2013, 21: 9839–9850

Qi X L, Xiong H Q, Lv X H, et al. Improved detectability of neuronal connectivity on mechanical sectioning setup by using confocal detection. J Biomed Opt, 2013, 18: 50506

Wu J, He Y, Yang Z, et al. 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution. NeuroImage, 2014, 87: 199–208

Luo Q M. Visible brain-wide networks at single-neuron resolution with micro-optical sectioning tomography. Conf Laser Electr, 2014

Yuan J, Gong H, Li A, et al. Visible rodent brain-wide networks at single-neuron resolution. Front Neuroanat, 2015, 9: 70

Gong H, Xu D, Yuan J, et al. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nat Commun, 2016, 7: 12142

Ragan T, Kadiri L R, Venkataraju K U, et al. Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Meth, 2012, 9: 255–258

Dodt H U, Leischner U, Schierloh A, et al. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Meth, 2007, 4: 331–336

Ouzounov D G, Wang T, Wang M, et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat Meth, 2017, 14: 388–390

Eisenberger N I, Lieberman M D, Williams K D. Does rejection hurt? An fMRI study of social exclusion. Science, 2003, 302: 290–292

Duncan J, Seitz R J, Kolodny J, et al. A neural basis for general intelligence. Science, 2000, 289: 457–460

Makeig S, Westerfield M, Jung T P, et al. Dynamic brain sources of visual evoked responses. Science, 2002, 295: 690–694

Sun B, Zhang L, Gong H, et al. Detection of optical neuronal signals in the visual cortex using continuous wave near-infrared spectroscopy. NeuroImage, 2014, 87: 190–198

Sun J Y, Sun B L, Zhang L, et al. Correlation between hemodynamic and electrophysiological signals dissociates neural correlates of conflict detection and resolution in a Stroop task: a simultaneous near-infrared spectroscopy and event-related potential study. J Biomed Opt, 2013, 18: 6014

Zhang Z, Sun B, Gong H, et al. A fast neuronal signal-sensitive continuous-wave near-infrared imaging system. Rev Sci Instruments, 2012, 83: 094301–094301

Kasthuri N, Hayworth K J, Berger D R, et al. Saturated reconstruction of a volume of neocortex. Cell, 2015, 162: 648–661

Balzarotti F, Eilers Y, Gwosch K C, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 2017, 355: 606–612

Akil H, Martone M E, Van Essen D C. Challenges and opportunities in mining neuroscience data. Science, 2011, 331: 708–712

Walter T, Shattuck D W, Baldock R, et al. Visualization of image data from cells to organisms. Nat Methods, 20107, 3: S26–S41

Chen M, Ebert D, Hagen H, et al. Data, information, and knowledge in visualization. IEEE Computer Graph Appl, 2009, 29: 12–19

Quan T, Zheng T, Yang Z, et al. NeuroGPS: automated localization of neurons for brain circuits using L1 minimization model. Sci Rep, 2013, 3: 1414

Yan C, Li A, Zhang B, et al. Automated and accurate detection of soma location and surface morphology in large-scale 3D neuron images. PLoS ONE, 2013, 8: e62579

Ding W, Li A, Wu J, et al. Automatic macroscopic density artefact removal in a Nissl-stained microscopic atlas of whole mouse brain. J Microscopy, 2013, 251: 168–177

Quan T, Zhou H, Li J, et al. NeuroGPS-Tree: automatic reconstruction of large-scale neuronal populations with dense neuritis. Nat Methods, 2016, 13: 51–54

Feng Z, Li A, Gong H, et al. An automatic method for nucleus boundary segmentation based on a closed cubic spline. Front Neuroinform, 2016, 10: 21

Whigham P A, Dick G, Parry M. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393: 440–442

Oweiss K G. Statistical Signal Processing for Neuroscience and Neurotechnology. Burlington: Academic Press/Elsevier, 2010

(责任编辑:本港台直播)

顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容