本港台开奖现场直播 j2开奖直播报码现场
当前位置: 新闻频道 > IT新闻 >

报码:MINIEYE首席科学家吴建鑫解读ICCV入选论文:用于(2)

时间:2017-08-12 20:18来源:本港台现场报码 作者:开奖直播现场 点击:
团队使用 ThiNet 对 VGG-16 在 ImageNet 进行剪枝,从实验数据可以发现,ThiNet 不仅能够降低 FLOPs 以及网络参数,对于 top-1 和 top-5 准确率的影响也非常小。 这

团队使用 ThiNet 对 VGG-16 在 ImageNet 进行剪枝,从实验数据可以发现,ThiNet 不仅能够降低 FLOPs 以及网络参数,对于 top-1 和 top-5 准确率的影响也非常小。

报码:MINIEYE首席科学家吴建鑫解读ICCV入选论文:用于

这里,M/B 表示百万/十亿 (10^6/10^9);f./b. 是前向/反向的缩写,速度由 batch size=32 在一张 M40 GPU 上测试所得。

报码:MINIEYE首席科学家吴建鑫解读ICCV入选论文:用于

与其他方法在 VGG-16 上的比较。部分工作的原文中未报告相关的准确数字,使用≈来表示相应的近似值。

除此之外,在 ResNet-50 上的类似实验证明,即便是对于紧凑的网络,ThiNet 也能减少超过一半的的参数与 FLOPs,而 top-5 准确度仅降低 1%。

报码:MINIEYE首席科学家吴建鑫解读ICCV入选论文:用于

这里,M/B 表示百万/十亿 (10^6/10^9);f./b. 是前向/反向的缩写,速度由 batch size=32 在一张 M40 GPU 上测试所得。

另外,ThiNet 能将 VGG16 网络模型剪枝到 5.05MB 的大小,保留 AlexNet 级别的精度,却拥有更强的泛化性能。吴建鑫表示,ThiNet 框架具有通用性,可推广能力较强,能够无缝适配于现有的深度学习框架,同时不会受到硬件体系结构的限制。目前,ThiNet 框架已经在团队的图像风格迁移项目中展开相关应用。

吴建鑫介绍,如何在资源受限的情况下更好地研究和应用计算机视觉技术是目前团队的重点研究方向。除此之外,他认为理解现有的经典神经网络也是非常重要的一个课题。「业内各研发团队设计的新型网络结构层出不穷,相比之下,传统的神经网络模型到底是如何使用学习出来的内容,又包含了哪些信息,相关的研究和探索还比较少,我个人更愿意把这方面内容研究清楚。」

最后,在谈到计算机视觉落地应用时,身为 ADAS 技术研发公司 MINIEYE 首席科学家的吴建鑫肯定了深度学习在自动驾驶领域内的巨大潜力。同时他也表示,由于汽车是需要连续运行的资源受限场景,其可靠性和资源占用问题都亟待解决。虽然眼下英伟达 GPU、赛灵思 FPGA、甚至微软新开发的 HPU 等都在硬件方面给予相应的支持,软件方面各家公司也都在积极研发,不过将技术算法转化成工程上可用的产品还需要一定的时间。「高级别的自动驾驶不仅仅涉及技术的问题,还与法律法规、公众接受程度等问题相关,相比之下,辅助驾驶技术的落地发展则更为乐观。在辅助驾驶方面,无论是学术界的基础研究还是产业公司的研发进展速度都是非常快的,我相信深度学习全面落地辅助驾驶产品在不远的将来是可以预见的。」

(责任编辑:本港台直播)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容