首先是数据行为在时间上的同频性,可以让掌握数据的企业认识多端口数据源融合下的用户。比如说我们的社交行为、内容阅读行为、购物行为,与真实世界中摄像头拍摄下的我们、交通信息中的我们、工商信息中的我们,其实各自都是我们自身的一个剪影。通过时间概念把这些数据整合起来,可以合并成一个相对完整的用户形象。 它在购买行为之外的所思所想,每天的所见所闻,其实都不难在暴露在公共视野下的数据拼接起来。这样企业对于用户消费动机与规律的把握,将提升到一个新的高度。 再比如说,数据行为会侦测用户消费轨迹的改变。大部分人在生活中都有稳定的消费规则,或高或低都有其规律。而一旦出现峰值,就会说明用户有某种消费异常产生。实时分析这些消费数据的行为轨迹,可以实时提供切中服务,比如用户突然出现消费冲动时进行针对引导、用户消费轨迹趋缓时给予消费刺激,用户消费进入极端低谷,就该考虑提供网贷产品了(开玩笑开玩笑)。 另一个数据行为带来的改变,是企业可以测算出用户应用的使用模型。比如一个篮球,用户本应该一周打五次,一次半小时。但假如出现用户使用率降低,可能就说明产品本身出现问题了。当然就篮球来说可能只是因为用户比较懒,但对于互联网产品来说,用户行为与预期模型之间的差别却能说明很多问题。 组织行为中的关键信息比特化 通过人工智能检测个体用户数据之外,还有一种检测集体数据行为的方式。比如已经在城市安防当中应用的人流轨迹识别技术。 这类技术可以观察一个群体的动态,并通过多个数据源进行数据采集与分析。这一类数据进行全面的数据行为监控很难,但却可以对关键信息进行比特化。永久留存并进行多个领域的应用。 比如说,某个写字楼里一到中午就声贝提高,人脸识别表示不高兴的人数急剧攀升:这可能说明外卖必须投入更多人力了。或者某地铁站早上的人流停滞度过高,人流运行缓慢:这可能说明要放更多共享单车了。通过比特化这些数据运行的关键值,可以给企业提供非常好的运行依据。 这只是最基本的一种人流数据行为应用。具体到相对垂直、复杂的群落组织中,atv,数据行为的应用性会更加广阔。 有一个多领域的交叉学科叫做组织行为学,专门研究组织中人的心理和行为表现及其客观规律,以达到预测、引导和控制人的行为的能力。通过计算机计算去测算和预期组织行为中个体与群落的互动,恐怕会带来无数种应用可能。 如何激发消费 说了这么多,到底如何把数据行为应用放到新零售里呢? 综上所述,数据行为可以更好地理解个体与群体在时间轴上的精准动向和动机。这就让很多基于移动互联网的简单商业激发有可能变得更加复杂。 通过对线上数据行为的广泛测写,结合现实世界数据收集端口提供帮助。人工智能至少可以为线下消费场景搭建以下几种能力: 一、解决地理空间中的推荐问题:我们都感受过所谓的智能推荐,基本都是根据你的浏览记录进行购买推荐。这种推荐本身非常不智能,而且往往进行线下推荐时就会失效。因为系统只能知道你的定位,却无法预计你的目标,也无从知道你的运动轨迹。更多时候还是需要用户自己去寻找消费。而结合运行轨迹、消费轨迹等数据行为,或许可以准确的在地理空间中实现线下消费推荐:不走冤枉路,不浪费时间,就近找到你的消费可能。 二、解决实时需求:数据行为检测的一个特征,就是其具有非常强的实时处理能力。很多消费契机都是实时出现的,可能用户自身都没有察觉到。但数据系统却可以感知到。比如数据证明你该渴了,又能从以往消费数据中判断你的口味,然后实时对接饮品店的消费可能。这就集成了很多消费机会。 三、提供线下的智能服务:新零售里一直有个预期,就是你到了店里,发现店里正好都是你需要买的东西,不用自己找。这种听起来像读心术的消费场景,也可能通过对你生活中方方面面数据行为的测算得到结果。人进行线下消费的频率其实是非常稳定的。利用迁移学习和过往数据来生成一个人的购物预期模型,并非不能做到。 (责任编辑:本港台直播) |