Sobel算子通常被用于图像处理中,这里以它为例。你可以分别乘以矢量[1,0,-1]和[1,2,1]的转置矢量后得到相同的滤波器。完成这个操作,只需要6个参数,而不是二维卷积中的9个参数。 这个例子说明了什么叫做空间可分离卷积,这种方法并不应用在深度学习中,只是用来帮你理解这种结构。 在神经网络中,我们通常会使用深度可分离卷积结构(depthwise separable convolution)。 这种方法在保持通道分离的前提下,接上一个深度卷积结构,即可实现空间卷积。接下来通过一个例子让大家更好地理解。 假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。具体为,32个3×3大小的卷积核会遍历16个通道中的每个数据,从而产生16×32=512个特征图谱。进而通过叠加每个输入通道对应的特征图谱后融合得到1个特征图谱。最后可得到所需的32个输出通道。 针对这个例子应用深度可分离卷积,用1个3×3大小的卷积核遍历16通道的数据,得到了16个特征图谱。在融合操作之前,接着用32个1×1大小的卷积核遍历这16个特征图谱,进行相加融合。这个过程使用了16×3×3+16×32×1×1=656个参数,远少于上面的16×32×3×3=4608个参数。 这个例子就是深度可分离卷积的具体操作,其中上面的深度乘数(depth multiplier)设为1,这也是目前这类网络层的通用参数。 这么做是为了对空间信息和深度信息进行去耦。从Xception模型的效果可以看出,这种方法是比较有效的。由于能够有效利用参数,因此深度可分离卷积也可以用于移动设备中。 原文: https://medium.com/towards-data-science/types-of-convolutions-in-deep-learning-717013397f4d 更多卷积动画: https://github.com/vdumoulin/conv_arithmetic 【完】 8月2日(周三),量子位邀请保险服务领域的AI公司灵智优诺CTO许可,分享,欢迎报名~返回搜狐,查看更多 (责任编辑:本港台直播) |